Solomon Practice Paper

Core Mathematics 4J
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	6	
3	8	
4	9	
5	9	
6	10	
7	13	
8	14	
Total:	75	

How I can achieve better:

1. The region bounded by the curve $y=x^{2}-2 x$ and the x-axis is rotated through 2π radians about the x-axis.

Find the volume of the solid formed, giving your answer in terms of π.
2. Use the substitution $u=1-x^{\frac{1}{2}}$ to find

$$
\int \frac{1}{1-x^{\frac{1}{2}}} \mathrm{~d} x .
$$

3. A curve has the equation

$$
2 \sin (2 x)-\tan (y)=0
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form in terms of x and y.
(b) Show that the tangent to the curve at the point $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ has the equation

$$
y=\frac{1}{2} x+\frac{\pi}{4} .
$$

4. Figure shows the curve with parametric equations

$$
x=a \sqrt{t}, \quad \text { and } \quad y=a t(1-t), \quad t \geq 0
$$

where a is a positive constant.

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The curve meets the x-axis at the origin, O, and at the point A. The tangent to the curve at A meets the y-axis at the point B as shown.
(b) Show that the area of triangle $O A B$ is a^{2}.
5. The gradient at any point (x, y) on a curve is proportional to \sqrt{y}.

Given that the curve passes through the point with coordinates $(0,4)$,
(a) show that the equation of the curve can be written in the form

$$
2 \sqrt{y}=k x+4
$$

where k is a positive constant.
Given also that the curve passes through the point with coordinates $(2,9)$,
(b) find the equation of the curve in the form $y=\mathrm{f}(x)$.
6. Figure shows a vertical cross-section of a vase.

The inside of the vase is in the shape of a right-circular cone with the angle between the sides in the cross-section being 60°. When the depth of water in the vase is $h \mathrm{~cm}$, the volume of water in the vase is $V \mathrm{~cm}^{3}$.
(a) Show that $V=\frac{1}{9} \pi h^{3}$.

The vase is initially empty and water is poured in at a constant rate of $120 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Find, to 2 decimal places, the rate at which h is increasing
i. when $h=6$,
ii. after water has been poured in for 8 seconds.
7. Relative to a fixed origin, the points A and B have position vectors

$$
\left(\begin{array}{c}
-4 \\
1 \\
3
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
-3 \\
6 \\
1
\end{array}\right)
$$

respectively.
(a) Find a vector equation for the line l_{1} which passes through A and B.

The line l_{2} has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
3 \\
-7 \\
9
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)
$$

(b) Show that lines l_{1} and l_{2} do not intersect.
(c) Find the position vector of the point C on l_{2} such that $\angle A B C=90^{\circ}$.
8.

$$
\mathrm{f}(x)=\frac{x(3 x-7)}{(1-x)(1-3 x)}, \quad|x|<\frac{1}{3} .
$$

(a) Find the values of the constants A, B and C such that

$$
\mathrm{f}(x)=A+\frac{B}{1-x}+\frac{C}{1-3 x} .
$$

(b) Evaluate

$$
\int_{0}^{\frac{1}{4}} \mathrm{f}(x) \mathrm{d} x
$$

giving your answer in the form $p+\ln (q)$, where p and q are rational.
(c) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.

