Solomon Practice Paper

Core Mathematics 4J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	8	
4	9	
5	9	
6	10	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[6]

1. The region bounded by the curve $y=x^2-2x$ and the x-axis is rotated through 2π radians about the x-axis.

Last updated: May 5, 2023

Find the volume of the solid formed, giving your answer in terms of π .

[6]

2. Use the substitution $u = 1 - x^{\frac{1}{2}}$ to find

$$\int \frac{1}{1 - x^{\frac{1}{2}}} \, \mathrm{d}x.$$

Last updated: May 5, 2023

3. A curve has the equation

$$2\sin(2x) - \tan(y) = 0.$$

- (a) Find an expression for $\frac{dy}{dx}$ in its simplest form in terms of x and y. [5]
- (b) Show that the tangent to the curve at the point $(\frac{\pi}{6}, \frac{\pi}{3})$ has the equation

$$y = \frac{1}{2}x + \frac{\pi}{4}.$$

Last updated: May 5, 2023

Total: 8

[3]

4. Figure shows the curve with parametric equations

$$x = a\sqrt{t}$$
, and $y = at(1-t)$, $t \ge 0$,

where a is a positive constant.

(a) Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 in terms of t .

[3]

The curve meets the x-axis at the origin, O, and at the point A. The tangent to the curve at A meets the y-axis at the point B as shown.

(b) Show that the area of triangle OAB is a^2 .

[6]

5. The gradient at any point (x, y) on a curve is proportional to \sqrt{y} .

Given that the curve passes through the point with coordinates (0,4),

(a) show that the equation of the curve can be written in the form

[5]

$$2\sqrt{y} = kx + 4,$$

Last updated: May 5, 2023

where k is a positive constant.

Given also that the curve passes through the point with coordinates (2,9),

(b) find the equation of the curve in the form y = f(x).

[4]

6. Figure shows a vertical cross-section of a vase.

The inside of the vase is in the shape of a right-circular cone with the angle between the sides in the cross-section being 60° . When the depth of water in the vase is h cm, the volume of water in the vase is V cm³.

Last updated: May 5, 2023

(a) Show that
$$V = \frac{1}{9}\pi h^3$$
. [3]

The vase is initially empty and water is poured in at a constant rate of $120 \text{ cm}^3 \text{ s}^{-1}$.

- (b) Find, to 2 decimal places, the rate at which h is increasing
 - i. when h=6,
 - ,
 - ii. after water has been poured in for 8 seconds.

[7]

7. Relative to a fixed origin, the points A and B have position vectors

$$\begin{pmatrix} -4\\1\\3 \end{pmatrix}$$
 and $\begin{pmatrix} -3\\6\\1 \end{pmatrix}$

respectively.

(a) Find a vector equation for the line l_1 which passes through A and B.

[2]

The line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ -7 \\ 9 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

Last updated: May 5, 2023

- (b) Show that lines l_1 and l_2 do not intersect.
- (c) Find the position vector of the point C on l_2 such that $\angle ABC = 90^{\circ}$.

[5] [6]

8.

$$f(x) = \frac{x(3x-7)}{(1-x)(1-3x)}, \qquad |x| < \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

[4]

$$f(x) = A + \frac{B}{1 - x} + \frac{C}{1 - 3x}.$$

(b) Evaluate

[5]

$$\int_0^{\frac{1}{4}} f(x) \, \mathrm{d}x,$$

giving your answer in the form $p + \ln(q)$, where p and q are rational.

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient.

Last updated: May 5, 2023

