Solomon Practice Paper

Core Mathematics 4G
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	10	
7	11	
8	15	
Total:	75	

How I can achieve better:

1. A curve has the equation

$$
x^{2}+2 x y^{2}+y=4 .
$$

Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

2．Use integration by parts to find

$$
\int x^{2} \mathrm{e}^{-x} \mathrm{~d} x
$$正 1

3. The first four terms in the series expansion of $(1+a x)^{n}$ in ascending powers of x are

$$
1-4 x+24 x^{2}+k x^{3}
$$

where a, n and k are constants and $|a x|<1$.
(a) Find the values of a and n.
(b) Show that $k=-160$.
4. (a) Use the trapezium rule with two intervals of equal width to find an estimate for the value of the integral

$$
\int_{0}^{3} \mathrm{e}^{\cos (x)} \mathrm{d} x
$$

giving your answer to 3 significant figures.
(b) Use the trapezium rule with four intervals of equal width to find another estimate for the value of the integral to 3 significant figures.
(c) Given that the true value of the integral lies between the estimates made in parts (a) and (b), comment on the shape of the curve $y=\mathrm{e}^{\cos (x)}$ in the interval $0 \leq x \leq 3$ and explain your answer.
5. A straight road passes through villages at the points A and B with position vectors

$$
(9 \mathbf{i}-8 \mathbf{j}+2 \mathbf{k}) \quad \text { and } \quad(4 \mathbf{j}+\mathbf{k})
$$

respectively, relative to a fixed origin.
The road ends at a junction at the point C with another straight road which lies along the line with equation

$$
\mathbf{r}=(2 \mathbf{i}+16 \mathbf{j}-\mathbf{k})+\mu(-5 \mathbf{i}+3 \mathbf{j})
$$

where μ is a scalar parameter.
(a) Find the position vector of C.

Given that 1 unit on each coordinate axis represents 200 metres,
(b) find the distance, in kilometres, from the village at A to the junction at C.
6. A small town had a population of 9000 in the year 2001 .

In a model, it is assumed that the population of the town, P, at time t years after 2001 satisfies the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=0.05 P \mathrm{e}^{-0.05 t}
$$

(a) Show that, according to the model, the population of the town in 2011 will be 13300 to 3 significant figures.
(b) Find the value which the population of the town will approach in the long term, according to the model.
7. Figure shows the curve with parametric equations

$$
x=t^{3}+1, \quad \text { and } \quad y=\frac{2}{t}, \quad t>0
$$

The shaded region is bounded by the curve, the x-axis and the lines $x=2$ and $x=9$.
(a) Find the area of the shaded region.
(b) Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the x-axis is 12π.
(c) Find a Cartesian equation for the curve in the form $y=\mathrm{f}(x)$.
8. (a) Show that the substitution $u=\sin (x)$ transforms the integral

$$
\int \frac{6}{\cos (x)(2-\sin (x))} d x
$$

into the integral

$$
\int \frac{6}{\left(1-u^{2}\right)(2-u)} \mathrm{d} u
$$

(b) Express

$$
\frac{6}{\left(1-u^{2}\right)(2-u)}
$$

in partial fractions.
(c) Hence, evaluate

$$
\int_{0}^{\frac{\pi}{6}} \frac{6}{\cos (x)(2-\sin (x))} \mathrm{d} x
$$

giving your answer in the form $a \ln (2)+b \ln (3)$, where a and b are integers.

