Solomon Practice Paper

Core Mathematics 4F
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	8	
2	8	
3	9	
4	9	
5	11	
6	13	
7	17	
Total:	75	

How I can achieve better:

1. A curve has the equation

$$
2 x^{2}+x y-y^{2}+18=0 .
$$

Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.

Last updated: May 5, 2023
2. Use the substitution $x=2 \tan (u)$ to show that

$$
\int_{0}^{2} \frac{x^{2}}{x^{2}+4} \mathrm{~d} x=\frac{1}{2}(4-\pi) .
$$

3. (a) Show that

$$
\left(1 \frac{1}{24}\right)^{-\frac{1}{2}}=k \sqrt{6}
$$

where k is rational.
(b) Expand

$$
\left(1+\frac{1}{2} x\right)^{-\frac{1}{2}}, \quad|x|<2
$$

in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(c) Use your answer to part (b) with $x=\frac{1}{12}$ to find an approximate value for $\sqrt{6}$, giving your answer to 5 decimal places.
4. Relative to a fixed origin, two lines have the equations

$$
\mathbf{r}=(7 \mathbf{j}-4 \mathbf{k})+s(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}), \quad \text { and } \quad \mathbf{r}=(-7 \mathbf{i}+\mathbf{j}+8 \mathbf{k})+t(-3 \mathbf{i}+2 \mathbf{k}),
$$

where s and t are scalar parameters.
(a) Show that the two lines intersect and find the position vector of the point where they meet.
(b) Find, in degrees to 1 decimal place, the acute angle between the lines.
5. A curve has parametric equations

$$
x=\frac{t}{2-t}, \quad \text { and } \quad y=\frac{1}{1+t}, \quad-1<t<2
$$

(a) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}\left(\frac{2-t}{1+t}\right)^{2}
$$

(b) Find an equation for the normal to the curve at the point where $t=1$.
(c) Show that the cartesian equation of the curve can be written in the form

$$
y=\frac{1+x}{1+3 x}
$$

6. (a) Find

$$
\int \tan ^{2}(x) \mathrm{d} x
$$

(b) Show that

$$
\int \tan (x) \mathrm{d} x=\ln |\sec (x)|+c
$$

where c is an arbitrary constant.
Figure shows part of the curve with equation $y=x^{\frac{1}{2}} \tan (x)$.

The shaded region bounded by the curve, the x-axis and the line $x=\frac{\pi}{3}$ is rotated through 2π radians about the x-axis.
(c) Show that the volume of the solid formed is

$$
\frac{1}{18} \pi^{2}(6 \sqrt{3}-\pi)-\pi \ln (2)
$$

7. Figure shows a hemispherical bowl of radius 5 cm .

The bowl is filled with water but the water leaks from a hole at the base of the bowl. At time t minutes, the depth of water is $h \mathrm{~cm}$ and the volume of water in the bowl is $V \mathrm{~cm}^{3}$, where

$$
V=\frac{1}{3} \pi h^{2}(15-h) .
$$

In a model it is assumed that the rate at which the volume of water in the bowl decreases is proportional to V.
(a) Show that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{k h(15-h)}{3(10-h)}
$$

where k is a positive constant.
(b) Express

$$
\frac{3(10-h)}{h(15-h)}
$$

in partial fractions.
Given that when $t=0, h=5$,
(c) show that

$$
h^{2}(15-h)=250 \mathrm{e}^{-k t} .
$$

Given also that when $t=2, h=4$,
(d) find the value of k to 3 significant figures.

