Solomon Practice Paper

Core Mathematics 4D
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	8	
3	10	
4	12	
5	12	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. (a) Find the binomial expansion of $(2-3 x)^{-3}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(b) State the set of values of x for which your expansion is valid.
2. A curve has the equation

$$
x^{2}+3 x y-2 y^{2}+17=0
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find an equation for the normal to the curve at the point $(3,-2)$.
3. (a) Find the values of the constants A, B, C and D such that

$$
\frac{2 x^{3}-5 x^{2}+6}{x^{2}-3 x} \equiv A x+B+\frac{C}{x}+\frac{D}{x-3} .
$$

(b) Evaluate

$$
\int_{1}^{2} \frac{2 x^{3}-5 x^{2}+6}{x^{2}-3 x} \mathrm{~d} x
$$

giving your answer in the form $p+q \ln (2)$, where p and q are integers.
4. A mathematician is selling goods at a car boot sale. She believes that the rate at which she makes sales depends on the length of time since the start of the sale, t hours, and the total value of sales she has made up to that time, $£ x$.

She uses the model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{k(5-t)}{x}
$$

where k is a constant.
Given that after two hours she has made sales of $£ 96$ in total,
(a) solve the differential equation and show that she made $£ 72$ in the first hour of the sale.

The mathematician believes that is it not worth staying at the sale once she is making sales at a rate of less than $£ 10$ per hour.
(b) Verify that at 3 hours and 5 minutes after the start of the sale, she should have already left.
5. Relative to a fixed origin, two lines have the equations

$$
\mathbf{r}=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)+s\left(\begin{array}{l}
1 \\
4 \\
5
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{c}
-3 \\
1 \\
-6
\end{array}\right)+t\left(\begin{array}{l}
3 \\
a \\
b
\end{array}\right),
$$

where a and b are constants and s and t are scalar parameters.
Given that the two lines are perpendicular,
(a) find a linear relationship between a and b.

Given also that the two lines intersect,
(b) find the values of a and b,
(c) find the coordinates of the point where they intersect.
6. Figure shows the curve with equation

$$
y=x \sqrt{1-x}, \quad 0 \leq x \leq 1
$$

(a) Use the substitution $u^{2}=1-x$ to show that the area of the region bounded by the curve and the x-axis is $\frac{4}{15}$.
(b) Find, in terms of π, the volume of the solid formed when the region bounded by the curve and the x-axis is rotated through 360° about the x-axis.
7. A curve has parametric equations

$$
x=3 \cos ^{2}(t), \quad \text { and } \quad y=\sin (2 t), \quad 0 \leq t<\pi .
$$

(a) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{3} \cot (2 t)
$$

(b) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.
(c) Show that the tangent to the curve at the point where $t=\frac{\pi}{6}$ has the equation

$$
2 x+3 \sqrt{3} y=9
$$

(d) Find a Cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$.

