Solomon Practice Paper

Core Mathematics 4C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	7	
3	11	
4	11	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. Use integration by parts to show that

$$
\int_{1}^{2} x \ln (x) \mathrm{d} x=2 \ln (2)-\frac{3}{4}
$$

Last updated: May 5, 2023
2. (a) Use the trapezium rule with two intervals of equal width to find an approximate value for the integral

$$
\int_{0}^{2} \arctan (x) \mathrm{d} x
$$

(b) Use the trapezium rule with four intervals of equal width to find an improved approximation for the value of the integral.
3. A curve has the equation

$$
3 x^{2}-2 x+x y+y^{2}-11=0 .
$$

The point P on the curve has coordinates $(-1,3)$.
(a) Show that the normal to the curve at P has the equation $y=2-x$.
(b) Find the coordinates of the point where the normal to the curve at P meets the curve again.
4. The points A and B have coordinates $(3,9,-7)$ and $(13,-6,-2)$ respectively.
(a) Find, in vector form, an equation for the line l which passes through A and B.
(b) Show that the point C with coordinates $(9,0,-4)$ lies on l.

The point D is the point on l closest to the origin, O.
(c) Find the coordinates of D.
(d) Find the area of triangle $O A B$ to 3 significant figures.
5. A bath is filled with hot water which is allowed to cool. The temperature of the water is $\theta^{\circ} \mathrm{C}$ after cooling for t minutes and the temperature of the room is assumed to remain constant at $20^{\circ} \mathrm{C}$.

Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,
(a) write down a differential equation connecting θ and t.

Given also that the temperature of the water is initially $37^{\circ} \mathrm{C}$ and that it is $36^{\circ} \mathrm{C}$ after cooling for four minutes,
(b) find, to 3 significant figures, the temperature of the water after ten minutes.

Advice suggests that the temperature of the water should be allowed to cool to $33^{\circ} \mathrm{C}$ before a child gets in.
(c) Find, to the nearest second, how long a child should wait before getting into the bath.
6. Figure shows the curve with parametric equations

$$
x=3 \sin (t) \quad \text { and } \quad y=2 \sin (2 t), \quad 0 \leq t<\pi
$$

The curve meets the x-axis at the origin, O, and at the point A.
(a) Find the value of t at O and the value of t at A.

The region enclosed by the curve is rotated through π radians about the x-axis.
(b) Show that the volume of the solid formed is given by

$$
\int_{0}^{\frac{\pi}{2}} 12 \pi \sin ^{2}(2 t) \cos (t) \mathrm{d} t
$$

(c) Using the substitution $u=\sin (t)$, or otherwise, evaluate this integral, giving your answer as an exact multiple of π.
7.

$$
\mathrm{f}(x)=\frac{8-x}{(1+x)(2-x)}, \quad|x|<1
$$

(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Show that

$$
\int_{0}^{\frac{1}{2}} \mathrm{f}(x) \mathrm{d} x=\ln (k),
$$

where k is an integer to be found.
(c) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.

