Solomon Practice Paper

Core Mathematics 4A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	8	
3	11	
4	12	
5	12	
6	12	
7	14	
Total:	75	

How I can achieve better:

1. A curve has the equation

$$
x^{2}(2+y)-y^{2}=0 .
$$

Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
2.

$$
\mathrm{f}(x)=\frac{3}{\sqrt{1-x}}, \quad|x|<1
$$

(a) Show that $\mathrm{f}\left(\frac{1}{10}\right)=\sqrt{10}$.
(b) Expand $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(c) Use your expansion to find an approximate value for $\sqrt{10}$, giving your answer to 8 significant figures.
(d) Find, to 1 significant figure, the percentage error in your answer to part (c).
3. Relative to a fixed origin, O, the line l has the equation

$$
\mathbf{r}=(\mathbf{i}+p \mathbf{j}-5 \mathbf{k})+\lambda(3 \mathbf{i}-\mathbf{j}+q \mathbf{k}),
$$

where p and q are constants and λ is a scalar parameter.
Given that the point A with coordinates $(-5,9,-9)$ lies on l,
(a) find the values of p and q,
(b) show that the point B with coordinates $(25,-1,11)$ also lies on l.

The point C lies on l and is such that $O C$ is perpendicular to l.
(c) Find the coordinates of C.
(d) Find the ratio $A C: C B$.
4. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, $x \mathrm{~g}$ of the compound has been produced.

Assuming that $x=0$ initially, and that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2(x-6)(x-3),
$$

(a) show that it takes approximately 7 minutes to produce 2 g of the compound.
(b) Explain why it is not possible to produce 3 g of the compound.
5. Figure shows the curve with equation $y=4 x^{\frac{1}{2}} \mathrm{e}^{-x}$.

The shaded region is bounded by the curve, the x-axis and the line $x=2$.
(a) Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region.

The shaded region is rotated through 2π radians about the x-axis.
(b) Find, in terms of π and e, the exact volume of the solid formed.
6. (a) Find

$$
\int 2 \sin (3 x) \sin (2 x) \mathrm{d} x .
$$

(b) Use the substitution $u^{2}=x+1$ to evaluate

$$
\int_{0}^{3} \frac{x^{2}}{\sqrt{x+1}} \mathrm{~d} x
$$

7. Figure shows the curve with parametric equations

$$
x=\cos (2 t) \quad \text { and } \quad y=\csc (t), \quad 0<t<\frac{\pi}{2}
$$

The point P on the curve has x-coordinate $\frac{1}{2}$.
(a) Find the value of the parameter t at P.
(b) Show that the tangent to the curve at P has the equation $y=2 x+1$.

The shaded region is bounded by the curve, the coordinate axes and the line $x=\frac{1}{2}$.
(c) Show that the area of the shaded region is given by

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} k \cos (t) \mathrm{d} t
$$

where k is a positive integer to be found.
(d) Hence find the exact area of the shaded region.

