Solomon Practice Paper

Core Mathematics 3J
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	8	
2	9	
3	10	
4	11	
5	11	
6	11	
7	15	
Total:	75	

How I can achieve better:

1. (a) Given that $\cos (x)=\sqrt{3}-1$, find the value of $\cos (2 x)$ in the form $a+b \sqrt{3}$, where a and b are integers.
(b) Given that

$$
2 \cos (y+30)^{\circ}=\sqrt{3} \sin (y-30)^{\circ}
$$

find the value of $\tan (y)$ in the form $k \sqrt{3}$ where k is a rational constant.
2. The functions f and g are defined by

$$
\begin{aligned}
\mathrm{f}(x) & \equiv x^{2}-3 x+7, & & x \in \mathbb{R} \\
\mathrm{~g}(x) & \equiv 2 x-1, & & x \in \mathbb{R}
\end{aligned}
$$

(a) Find the range of f.
(b) Evaluate of (-1).
(c) Solve the equation $\operatorname{fg}(x)=17$.
3.

$$
\mathrm{f}(x)=\frac{x^{4}+x^{3}-13 x^{2}+26 x-17}{x^{2}-3 x+3}, x \in \mathbb{R} .
$$

(a) Find the values of the constants A, B, C and D such that

$$
\mathrm{f}(x)=x^{2}+A x+B+\frac{C x+D}{x^{2}-3 x+3} .
$$

The point P on the curve $y=\mathrm{f}(x)$ has x-coordinate 1 .
(b) Show that the normal to the curve $y=\mathrm{f}(x)$ at P has the equation

$$
x+5 y+9=0
$$

4. (a) Given that

$$
x=\sec \left(\frac{y}{2}\right), 0 \leq y<\pi,
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x \sqrt{x^{2}-1}}
$$

(b) Find an equation for the tangent to the curve $y=\sqrt{3+2 \cos (x)}$ at the point where $x=\frac{\pi}{3}$.
5.

$$
\mathrm{f}(x)=5+\mathrm{e}^{2 x-3}, x \in \mathbb{R}
$$

(a) State the range of f.
(b) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.
(c) Solve the equation $\mathrm{f}(x)=7$.
(d) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $y=7$.
6. (a) Prove the identity

$$
2 \cot (2 x)+\tan (x) \equiv \cot (x), \quad x \neq \frac{n}{2} \pi, \quad n \in \mathbb{Z}
$$

(b) Solve, for $0 \leq x<\pi$, the equation

$$
2 \cot (2 x)+\tan (x)=\csc ^{2}(x)-7
$$

giving your answers to 2 decimal places.
7. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \rightarrow|2 x-5|, & x \in \mathbb{R}, \\
\mathrm{~g}: x \rightarrow \ln (x+3), & x \in \mathbb{R}, x>-3 .
\end{array}
$$

(a) State the range of f.
(b) Evaluate $\mathrm{fg}(-2)$.
(c) Solve the equation $\operatorname{fg}(x)=3$, giving your answers in exact form.
(d) Show that the equation $\mathrm{f}(x)=\mathrm{g}(x)$ has a root, α, in the interval $[3,4]$.
(e) Use the iteration formula

$$
x_{n+1}=\frac{1}{2}\left[5+\ln \left(x_{n}+3\right)\right],
$$

with $x_{0}=3$, to find x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 significant figures.
(f) Show that your answer for x_{4} is the value of α correct to 4 significant figures.

