Solomon Practice Paper

Core Mathematics 3D
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	9	
5	10	
6	11	
7	12	
8	14	
Total:	75	

How I can achieve better:

1. The function f is defined by

$$
\mathrm{f}(x) \equiv 2+\ln (3 x-2), \quad x \in \mathbb{R}, \quad x>\frac{2}{3}
$$

(a) Find the exact value of $\mathrm{ff}(1)$.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
2. Find, to 2 decimal places, the solutions of the equation

$$
3 \cot ^{2}(x)-4 \csc (x)+\csc ^{2}(x)=0
$$

in the interval $0 \leq x \leq 2 \pi$.
3. (a) Given that $y=\ln (x)$, find expressions in terms of y for
i. $\log _{2}(x)$,
ii. $\ln \left(\frac{x^{2}}{e}\right)$.
(b) Hence, or otherwise, solve the equation

$$
\log _{2}(x)=4-\ln \left(\frac{x^{2}}{\mathrm{e}}\right)
$$

giving your answer to 2 decimal places.
4. (a) Use the identities for $(\sin (A)+\sin (B))$ and $(\cos (A)+\cos (B))$ to prove that

$$
\frac{\sin (2 x)+\sin (2 y)}{\cos (2 x)+\cos (2 y)} \equiv \tan (x+y) .
$$

(b) Hence, show that

$$
\tan \left(52.5^{\circ}\right)=\sqrt{6}-\sqrt{3}-\sqrt{2}+2
$$

5.

$$
\mathrm{f}(x)=3-\frac{x-1}{x-3}+\frac{x+11}{2 x^{2}-5 x-3}, \quad x \in \mathbb{R}, x<-1
$$

(a) Show that

$$
\mathrm{f}(x)=\frac{4 x-1}{2 x+1}
$$

(b) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=-2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
6. A curve has the equation $y=\mathrm{e}^{3 x} \cos (2 x)$.
(a) Find $\frac{d y}{d x}$.
(b) Show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{3 x}(5 \cos (2 x)-12 \sin (2 x))
$$

The curve has a stationary point in the interval $[0,1]$.
(c) Find the x-coordinate of the stationary point to 3 significant figures.
(d) Determine whether the stationary point is a maximum or minimum point and justify your answer.
7. (a) Sketch on the same diagram the graphs of $y=4 a^{2}-x^{2}$ and $y=|2 x-a|$, where a is a positive constant. Show, in terms of a, the coordinates of any points where each graph meets the coordinate axes.
(b) Find the exact solutions of the equation

$$
4-x^{2}=|2 x-1|
$$

8．Figure shows the curve with equation $y=2 x-3 \ln (2 x+5)$ and the normal to the curve at the point $P(-2,-4)$ ．

（a）Find an equation for the normal to the curve at P ．
The normal to the curve at P intersects the curve again at the point Q with x－coordinate q ．
（b）Show that $1<q<2$ ．
（c）Show that q is a solution of the equation

$$
x=\frac{12}{7} \ln (2 x+5)-2 .
$$

（d）Use the iterative formula

$$
x_{n+1}=\frac{12}{7} \ln \left(2 x_{n}+5\right)-2,
$$

with $x_{0}=1.5$ ，to find the value of q to 3 significant figures and justify the accuracy of your answer．

