Solomon Practice Paper

Core Mathematics 2L
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	4	
2	5	
3	6	
4	6	
5	7	
6	9	
7	11	
8	13	
9	14	
Total:	75	

How I can achieve better:

1. A geometric series has first term 75 and second term -15 .
(a) Find the common ratio of the series.
(b) Find the sum to infinity of the series.
2. A circle has the equation

$$
x^{2}+y^{2}+8 x-4 y+k=0
$$

where k is a constant.
(a) Find the coordinates of the centre of the circle.

Given that the x-axis is a tangent to the circle,
(b) find the value of k.
3. Figure shows a circle of radius r and centre O in which $A D$ is a diameter.

The points B and C lie on the circle such that $O B$ and $O C$ are arcs of circles of radius r with centres A and D respectively.
Show that the area of the shaded region $O B C$ is $\frac{1}{6} r^{2}(3 \sqrt{3}-\pi)$.
4. (a) Sketch on the same diagram the graphs of $y=\sin (2 x)$ and $y=\tan \left(\frac{x}{2}\right)$ for x in the interval $0 \leq x \leq 360^{\circ}$.
(b) Hence state how many solutions exist to the equation

$$
\sin (2 x)=\tan \left(\frac{x}{2}\right)
$$

for x in the interval $0 \leq x \leq 360^{\circ}$ and give a reason for your answer.
5. (a) Find the value of a such that

$$
\log _{a}(27)=3+\log _{a}(8)
$$

(b) Solve the equation

$$
2^{x+3}=6^{x-1}
$$

giving your answer to 3 significant figures.
6. (a) Expand $(2+x)^{4}$ in ascending powers of x, simplifying each coefficient.
(b) Find the integers A, B and C such that

$$
(2+4)^{4}+(2-x)^{4} \equiv A+B x^{2}+C x^{4} .
$$

(c) Find the real values of x for which

$$
(2+4)^{4}+(2-x)^{4}=136
$$

7.

$$
\mathrm{f}(x)=2 x^{3}-5 x^{2}+x+2
$$

(a) Show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Fully factorise $\mathrm{f}(x)$.
(c) Solve the equation $\mathrm{f}(x)=0$.
(d) Find the values of θ in the interval $0 \leq \theta \leq 2 \pi$ for which

$$
2 \sin ^{3}(\theta)-5 \sin ^{2}(\theta)+\sin (\theta)+2=0
$$

giving your answers in terms of π.
8. The curve C has the equation

$$
y=3-x^{\frac{1}{2}}-2 x^{-\frac{1}{2}}, \quad x>0 .
$$

(a) Find the coordinates of the points where C crosses the x-axis.
(b) Find the exact coordinates of the stationary point of C.
(c) Determine the nature of the stationary point.
(d) Sketch the curve C.
9. Figure shows the curve C with equation $y=3 x-4 \sqrt{x}+2$ and the tangent to C at the point A.

Given that A has x-coordinate 4,
(a) show that the tangent to C at A has the equation $y=2 x-2$.

The shaded region is bounded by C, the tangent to C at A and the positive coordinate axes.
(b) Find the area of the shaded region.

