Solomon Practice Paper

Core Mathematics 2L

Time allowed: 90 minutes

Name:

Teacher:

Question	Points	Score
1	4	
2	5	
3	6	
4	6	
5	7	
6	9	
7	11	
8	13	
9	14	
Total:	75	

How I can achieve better:

- •
- -
- •

Last updated: May 5, 2023

1. A geometric series has first term 75 and second term -15.

(a) Find the common ratio of the series.
(b) Find the sum to infinity of the series.
(c) Total: 4

2. A circle has the equation

 $x^2 + y^2 + 8x - 4y + k = 0,$

where k is a constant.

(a) Find the coordinates of the centre of the circle.

Given that the *x*-axis is a tangent to the circle,

(b) find the value of k.

[2]

[3]

Total: 5

3. Figure shows a circle of radius r and centre O in which AD is a diameter.

The points B and C lie on the circle such that OB and OC are arcs of circles of radius r with centres A and D respectively.

Show that the area of the shaded region OBC is $\frac{1}{6}r^2(3\sqrt{3}-\pi)$.

www.CasperYC.club

[6]

- 4. (a) Sketch on the same diagram the graphs of $y = \sin(2x)$ and $y = \tan\left(\frac{x}{2}\right)$ for x in the interval [4] $0 \le x \le 360^{\circ}$.
 - (b) Hence state how many solutions exist to the equation

$$\sin(2x) = \tan\left(\frac{x}{2}\right)$$

for x in the interval $0 \leq x \leq 360^\circ$ and give a reason for your answer.

Total: 6

[2]

- 5. (a) Find the value of a such that
 - (b) Solve the equation

 $\log_a(27) = 3 + \log_a(8).$

 $2^{x+3} = 6^{x-1},$

giving your answer to 3 significant figures.

www.CasperYC.club

[4]

- 6. (a) Expand $(2+x)^4$ in ascending powers of x, simplifying each coefficient.
 - (b) Find the integers A, B and C such that

$$(2+4)^4 + (2-x)^4 \equiv A + Bx^2 + Cx^4.$$

(c) Find the real values of x for which

$$(2+4)^4 + (2-x)^4 = 136$$

Total: 9

[3]

7.

$$f(x) = 2x^3 - 5x^2 + x + 2$$

.

- (a) Show that (x-2) is a factor of f(x).
- (b) Fully factorise f(x).
- (c) Solve the equation f(x) = 0.
- (d) Find the values of θ in the interval $0 \le \theta \le 2\pi$ for which

$$2\sin^3(\theta) - 5\sin^2(\theta) + \sin(\theta) + 2 = 0,$$

giving your answers in terms of π .

Total: 11

[2]

[4]

[1]

[4]

8. The curve C has the equation

$$y = 3 - x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}, \quad x > 0.$$

(a) Find the coordinates of the points where C crosses the x-axis.	[4]
(b) Find the exact coordinates of the stationary point of C .	[5]
(c) Determine the nature of the stationary point.	[2]
(d) Sketch the curve C .	[2]
	Total: 13

9. Figure shows the curve C with equation $y = 3x - 4\sqrt{x} + 2$ and the tangent to C at the point A.

Given that A has x-coordinate 4,

(a) show that the tangent to C at A has the equation y = 2x - 2. [6]

The shaded region is bounded by C, the tangent to C at A and the positive coordinate axes.

(b) Find the area of the shaded region.

Total: 14

[8]