Solomon Practice Paper

Core Mathematics 2H

Time allowed: 90 minutes

Centre:	www.	Casper	YC.club
---------	------	--------	---------

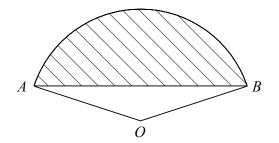
Name:

Teacher:

Question	Points	Score
1	4	
2	5	
3	8	
4	9	
5	9	
6	9	
7	9	
8	10	
9	12	
Total:	75	

How I can achieve better:

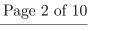
- •
- -
- •



Last updated: May 5, 2023

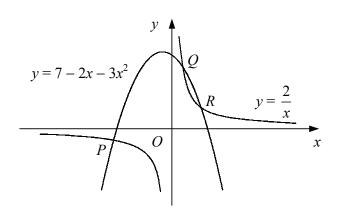
1. A circle has the equation $x^2 + y^2 - 6y - 7 = 0$.	
(a) Find the coordinates of the centre of the circle.	[2]
(b) Find the radius of the circle.	[2]
	Total: 4

2. Figure shows the sector OAB of a circle, centre O, in which $\angle AOB = 2.5$ radians.



Given that the perimeter of the sector is 36 cm,

- (a) find the length OA,
- (b) find the area of the shaded segment.


[3] Total: 5

[2]

3. Figure shows the curves with equations $y = 7 - 2x - 3x^2$ and $y = \frac{2}{x}$.

The two curves intersect at the points P, Q and R.

(a) Show that the x-coordinates of P, Q and R satisfy the equation $3x^3 + 2x^2 - 7x + 2 = 0.$ [2]

Given that P has coordinates (-2, -1),

(b) find the coordinates of Q and R.

[6]

ſ	2	
		1

- 4. (a) Expand $(1+x)^4$ in ascending powers of x.
 - (b) Using your expansion, express each of the following in the form $a + b\sqrt{2}$, where a and b are [7] integers.

i.
$$(1 + \sqrt{2})^4$$

ii. $(1 - \sqrt{2})^8$

- 5. (a) Describe fully a single transformation that maps the graph of $y = 3^x$ onto the graph of [1] $y = \left(\frac{1}{3}\right)^x$.
 - (b) Sketch on the same diagram the curves $y = \left(\frac{1}{3}\right)^x$ and $y = 2(3^x)$, showing the coordinates of [3] any points where each curve crosses the coordinate axes.

The curves $y = \left(\frac{1}{3}\right)^x$ and $y = 2(3^x)$ intersect at the point P.

(c) Find the x-coordinate of P to 2 decimal places and show that the y-coordinate of P is $\sqrt{2}$. [5]

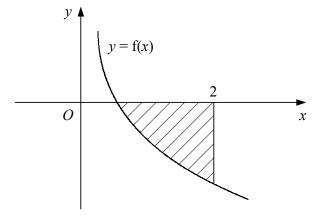
6. A curve has the equation

 $y = x^3 + ax^2 - 15x + b,$

where a and b are constants.

Given that the curve is stationary at the point (-1, 12),

- (a) find the values of a and b,
- (b) find the coordinates of the other stationary point of the curve.


[3]

[6]

7. Figure shows part of the curve y = f(x) where

$$f(x) = \frac{1 - 8x^3}{x^2}, \quad x \neq 0.$$

(a) Solve the equation f(x) = 0. [3]

(b) Find
$$\int f(x) dx$$
. [3]

(c) Find the area of the shaded region bounded by the curve y = f(x), the x-axis and the line [3] x = 2.

www.CasperYC.club

Last updated: May 5, 2023

- 8. (a) Given that $\sin(\theta) = 2 \sqrt{2}$, find the value of $\cos^2(\theta)$ in the form $a + b\sqrt{2}$ where a and b are [3] integers.
 - (b) Find, in terms of π , all values of x in the interval $0 \le x < \pi$ for which

$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{1}{2}.$$

Total: 10

[7]

9.	The second and fifth terms of a geometric series are -48 and 6 respectively.	
	(a) Find the first term and the common ratio of the series.	[5]
	(b) Find the sum to infinity of the series.	[2]
	(c) Show that the difference between the sum of the first n terms of the series and its sum to infinity is given by 2^{6-n} .	[5]
	Т	otal: 12