Solomon Practice Paper

Core Mathematics 2D

Time allowed: 90 minutes

Centre:	www.Caspo	erYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	4	
3	6	
4	8	
5	8	
6	9	
7	9	
8	13	
9	14	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1.	Expand	(3 -	$(2x)^4$	in	ascending	powers	of a	x and	simplify	each	coefficient.
----	--------	------	----------	----	-----------	--------	------	-------	----------	------	--------------

www.CasperYC.club

Last updated: May 5, 2023

2. Figure shows triangle PQR in which PQ = x, PR = 7 - x, QR = x + 1 and $PQR = 60^{\circ}$.

Using the cosine rule, find the value of x.

www.CasperYC.club

[4]

3. Find the coordinates of the stationary point of the curve with equation

$$y = x + \frac{4}{x^2}.$$

www.CasperYC.club

4. Find all values of x in the interval $0^{\circ} \leq x < 360^{\circ}$ for which

 $2\sin^2(x) - 2\cos(x) - \cos^2(x) = 1.$

5.	(a)	Sketch the curve $y = 5^{x-1}$, showing the coordinates of any points of intersection with the	[2]
		coordinate axes.	

- (b) Find, to 3 significant figures, the x-coordinates of the points where the curve $y = 5^{x-1}$ [6] intersects
 - i. the straight line y = 10,
 - ii. the curve $y = 2^x$.

Total: 8

6.

$$f(x) = 2x^3 + 3x^2 - 6x + 1.$$

- (a) Find the remainder when f(x) is divided by (2x 1). [2]
 - (b) i. Find the remainder when f(x) is divided by (x+2).
 - ii. Hence, or otherwise, solve the equation $2x^3 + 3x^2 6x 8 = 0$, giving your answers to 2 decimal places where appropriate.

Total: 9

[7]

$$\frac{a(1-r^n)}{1-r}.$$

(b) Evaluate
$$\sum_{r=1}^{12} 5 \times 2^r$$
.

Total: 9

[5]

www.CasperYC.club

8. Figure shows the curve with equation $y = 5 + x - x^2$ and the normal to the curve at the point P(1, 5).

- (a) Find an equation for the normal to the curve at P in the form y = mx + c. [5]
- (b) Find the coordinates of the point Q, where the normal to the curve at P intersects the curve [2]again.
- (c) Show that the area of the shaded region bounded by the curve and the straight line PQ is [6] $\frac{4}{3}$.

Total: 13

9. Figure shows the circle ${\cal C}$ with equation

(a) Find the coordinates of the centre and the radius of C .	[3]
C crosses the y-axis at the points P and Q .	
(b) Find the coordinates of P and Q .	[3]
The chord PQ subtends an angle of θ at the centre of C .	
(c) Using the cosine rule, show that $\cos(\theta) = \frac{7}{25}$.	[4]
(d) Find the area of the shaded minor segment bounded by C and the chord PQ .	[4]

Total: 14

