Solomon Practice Paper

Core Mathematics 2B

Time allowed: 90 minutes

Centre:	www.	Casper	YC.club
---------	------	--------	---------

Name:

Teacher:

Question	Points	Score
1	4	
2	6	
3	6	
4	7	
5	9	
6	10	
7	10	
8	10	
9	13	
Total:	75	

How I can achieve better:

- •
- -
- •

Last updated: May 5, 2023

 $\log_5(4x+3) - \log_5(x-1) = 2.$

Page 1 of 9

$$\int_{1}^{3} x^{2} - 2x + k \, \mathrm{d}x = 8\frac{2}{3},$$

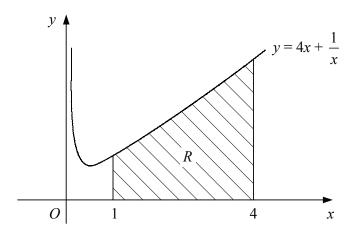
find the value of the constant k.

- 3. For the binomial expansion in ascending powers of x of $(1 + \frac{1}{4}x)^n$, where n is an integer and $n \ge 2$,
 - (a) find and simplify the first three terms,
 - (b) find the value of n for which the coefficient of x is equal to the coefficient of x^2 .

Total: 6

[3]

[3]



4. Solve, for $0 \le x < 360$, the equation

 $3\cos^2(x^\circ) + \sin^2(x^\circ) + 5\sin(x^\circ) = 0.$

5. The circle C has centre $(-1, 6)$ and radius $2\sqrt{5}$.	
(a) Find an equation for C .	[2]
The line $y = 3x - 1$ intersects C at the points A and B.	
(b) Find the x-coordinates of A and B .	[4]
(c) Show that $AB = 2\sqrt{10}$.	[3]
	Total: 9

6. Figure shows the curve with equation $y = 4x + \frac{1}{x}, x > 0$.

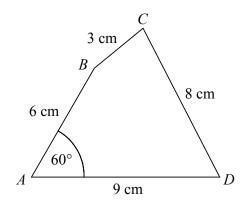
(a) Find the coordinates of the minimum point of the curve.

The shaded region R is bounded by the curve, the x-axis and the lines x = 1 and x = 4.

(b) Use the trapezium rule with three intervals of equal width to estimate the area of R. [5]

Total: 10

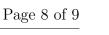
[5]



- 7. A student completes a mathematics course and begins to work through past exam papers.
 He completes the first paper in 2 hours and the second in 1 hour 54 minutes.
 Assuming that the times he takes to complete successive papers form a geometric sequence,
 (a) find, to the nearest minute, how long he will take to complete the fifth paper, [3]
 - (b) show that the total time he takes to complete the first eight papers is approximately 13 [3] hours 28 minutes,
 - (c) find the least number of papers he must work through if he is to complete a paper in less [4] than one hour.

Total: 10

8. Figure shows the quadrilateral ABCD in which AB = 6 cm, BC = 3 cm, CD = 8 cm, AD = 9 cm and $\angle BAD = 60^{\circ}$.



- $\begin{bmatrix} 5 \end{bmatrix}$
- (c) Find the area of quadrilateral ABCD.

Total: 10

[3]

9.

$$f(x) = x^3 - 9x^2 + 24x - 16x^2 + 24x^2 + 24x^2$$

- (a) Evaluate f(1) and hence state a linear factor of f(x).
- (b) Show that f(x) can be expressed in the form

$$\mathbf{f}(x) = (x+p)(x+q)^2,$$

where p and q are integers to be found.

(c) Sketch the curve y = f(x).

(d) Using integration, find the area of the region enclosed by the curve y = f(x) and the x-axis. [5]

Total: 13

[2]

[4]

[2]