Solomon Practice Paper

Core Mathematics 2A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	6	
4	7	
5	7	
6	10	
7	11	
8	11	
9	13	
Total:	75	

How I can achieve better:

- •
- -
- -
- •

Last updated: May 5, 2023

1.

$$f(x) = 3x^3 - 2x^2 + kx + 9.$$

Given that when f(x) is divided by (x+2) there is a remainder of -35,

- (a) find the value of the constant k,
- (b) find the remainder when f(x) is divided by (3x 2).

[2]

[3]

Total: 5

2. Figure shows the curve with equation $y = 2^x$.

Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve, the x-axis and the lines x = -2 and x = 2.

[5]

3. Giving your answers in terms of π , solve the equation

$$3\tan^2(\theta) - 1 = 0,$$

for θ in the interval $-\pi \leq \theta \leq \pi$.

$\mathbf{C}\mathbf{c}$	ore Mathematics – Practice Paper 2A	Page 4 of 9	
4.	(a) Expand $(1+3x)^8$ in ascending powers of x up to and including the terms of $x = 1$	rm in x^3 .	[4]
	You should simplify each coefficient in your expansion.		
	(b) Use your series, together with a suitable value of x which you should s value of $(1.003)^8$, giving your answer to 8 significant figures.	state, to estimate the	[3]

- 5. (a) Given that t = log₃(x), find expressions in terms of t for
 i. log₃(x²),
 ii. log₉(x).
 - (b) Hence, or otherwise, find to 3 significant figures the value of x such that

$$\log_3(x^2) - \log_9(x) = 4.$$

Total: 7

[4]

[3]

6.	The circle	C	has centre	(-3, 2)	and passes	through	the point	(2,1).
----	------------	---	------------	---------	------------	---------	-----------	--------

- (a) Find an equation for C.
- (b) Show that the point with coordinates (-4, 7) lies on C.
- (c) Find an equation for the tangent to C at the point (-4, 7).

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

Total: 10

[4]

[1]

[5]

7. Figure shows the curve $y = 2x^2 + 6x + 7$ and the straight line y = 2x + 13.

(a) Find the coordinates of the points where the curve and line intersect. [4](b) Find the area of the shaded region bounded by the curve and line. [7]

Total: 11

8. <i>I</i>	A geometric series has first term a and common ratio r where $r > 1$.	
r	The sum of the first n terms of the series is denoted by S_n .	
(Given that $S_4 = 10 \times S_2$,	
	(a) find the value of r .	[6]
(Given also that $S_3 = 26$,	
	(b) find the value of a ,	[3]
	(c) show that $S_6 = 728$.	[2]
		Total: 11

9. Figure shows a design consisting of two rectangles measuring x cm by y cm joined to a circular sector of radius x cm and angle 0.5 radians.

Given that the area of the design is 50 cm^2 ,

(a) show that the perimeter, $P \, \mathrm{cm}$, of the design is given by [5]

$$P = 2x + \frac{100}{x}$$

- (b) Find the value of x for which P is a minimum. [4]
- (c) Show that P is a minimum for this value of x. [2]
- (d) Find the minimum value of P in the form $k\sqrt{2}$.

[2]

Total: 13

www.CasperYC.club