Solomon Practice Paper

Core Mathematics 1J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

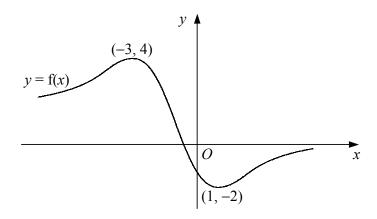
Question	Points	Score
1	4	
2	4	
3	6	
4	6	
5	6	
6	7	
7	8	
8	11	
9	11	
10	12	
Total:	75	

How I can achieve better:

•

•

•


[4]

^	. 7	7	
ve your answer in the form	ax + by = c, when	$e \ a, b \ and \ c \ are in$	tegers.

[4]

Express $\sqrt{22.5}$ in th	e 101111 KV 10.		

3. Figure shows a sketch of the curve with equation y = f(x).

The curve has a maximum at (-3,4) and a minimum at (1,-2).

Showing the coordinates of any turning points, sketch on separate diagrams the curves with equations

(a)
$$y = 2f(x)$$
, [3]

(b)
$$y = -f(x)$$
. [3]

Total: 6

4.	(a) Solve the inequality		[2]
		4(x-2) < 2x + 5.	
	(b) Find the value of y such that		[4]
		$4^{y+1} = 8^{2y-1}.$	
			Total: 6

5.	A sequence of terms	$\{t_n\}$	is defined for $n \ge 1$ by the r	ecurrence relation
----	---------------------	-----------	-----------------------------------	--------------------

$$t_{n+1} = kt_n - 7, \quad t_1 = 3,$$

where k is a constant.

(a) Find expressions for t_2 and t_3 in terms of	(a) Find	expressions	for	t_2	and	t_3	in	terms	of	
--	---	---	--------	-------------	-----	-------	-----	-------	----	-------	----	--

[3]

Given that $t_3 = 13$,

1	$\langle h \rangle$	find	the	possible	values	$\circ f$	ŀ
- (U.) IIIIQ	une	possible	varues	OΙ	κ.

[3]

Total:	6
--------	---

[7]

he curve with equ				vitii <i>x</i> -coordin <i>a</i>	ue 2.
nd an equation for	or the tangent to	the curve at 2	A.		

7.	As part of a new training programme, Habib decides to do sit-ups every day.	
	He plans to do 20 per day in the first week, 22 per day in the second week, 24 per day in the third week and so on, increasing the daily number of sit-ups by two at the start of each week.	
	(a) Find the number of sit-ups that Habib will do in the fifth week.	[3]
	(b) Show that he will do a total of 1512 sit-ups during the first eight weeks.	[2]
	In the n th week of training, the number of sit-ups that Habib does is greater than 300 for the first time.	
	(c) Find the value of n .	[3]
		Total: 8

8.	Some ink is	s poured	onto a piece	of cloth	forming a	stain that	then spreads.
----	-------------	----------	--------------	----------	-----------	------------	---------------

The area of the stain, $A \text{ cm}^2$, after t seconds is given by

$$A = (p + qt)^2,$$

where p and q are positive constants.

Given that when t = 0, A = 4 and that when t = 5, A = 9,

(a) find the value of p and show that $q = \frac{1}{5}$,

[5] [4]

(b) find $\frac{\mathrm{d}A}{\mathrm{d}t}$ in terms of t,

[2]

(c) find the rate at which the area of the stain is increasing when t = 15.

Total: 11

9.	The curve C has the equation $y = x^2 + 2x + 4$.
	(a) Express $x^2 + 2x + 4$ in the form $a(x+b)^2 + c$ and hence state the coordinates of the minimum

[4]

The straight line l has the equation x + y = 8.

(b) Sketch l and C on the same set of axes.

point of C.

[3]

[4]

(c) Find the coordinates of the points where l and C intersect.

Tota	1:	11
Tota	l:	11

[5]

10. The curve C has the equation y = f(x).

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - \frac{2}{x^2}, \quad x \neq 0,$$

and that the point A on C has coordinates (2,6),

- (a) find an equation for C,
- (b) find an equation for the tangent to C at A, giving your answer in the form ax + by + c = 0 [4] where a, b and c are integers,
- (c) show that the line y = x + 3 is also a tangent to C.

		Τ