Solomon Practice Paper

Core Mathematics 1G

Time allowed: 90 minutes

Centre:	www.Casper	YC.club
---------	------------	---------

Name:

Teacher:

Question	Points	Score
1	3	
2	4	
3	6	
4	7	
5	10	
6	10	
7	11	
8	11	
9	13	
Total:	75	

How I can achieve better:

- •
- -
- -
- •

1. Solve the equation

[3]

2. Solve the inequality

 $x(2x+1) \le 6$

[4]

3. The curve C has the equation $y = (x - a)^2$ where a is a constant. Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6.$$

- (a) find the value of a,
- (b) describe fully a single transformation that would map C onto the graph of $y = x^2$.

Total: 6

[4]

[2]

www.CasperYC.club

- 4. (a) Find in exact form the coordinates of the points where the curve $y = x^2 4x + 2$ crosses [4] the x-axis.
 - (b) Find the value of the constant k for which the straight line y = 2x + k is a tangent to the [3] curve $y = x^2 4x + 2$.

Total: 7

- 5. The curve C with equation $y = (2-x)(3-x)^2$ crosses the x-axis at the point A and touches the x-axis at the point B.
 - (a) Sketch the curve C, showing the coordinates of A and B. [3]
 - (b) Show that the tangent to C at A has the equation x + y = 2.

Total: 10

[7]

6.

$$f(x) = 9 + 6x - x^2.$$

(a) Find the values of A and B such that

$$\mathbf{f}(x) = A - (x+B)^2$$

- (b) State the maximum value of f(x).
- (c) Solve the equation f(x) = 0, giving your answers in the form $a + b\sqrt{2}$ where a and b are [3] integers.
- (d) Sketch the curve y = f(x).

Total: 10

[1]

[4]

[2]

- 7. (a) An arithmetic series has a common difference of 7.
 - Given that the sum of the first 20 terms of the series is 530, find
 - i. the first term of the series,
 - ii. the smallest positive term of the series.
 - (b) The terms of a sequence are given by

$$u_n = (n+k)^2, \quad n \ge 1,$$

where k is a positive constant. Given that $u_2 = 2u_1$,

- i. find the value of k,
- ii. show that $u_3 = 11 + 6\sqrt{2}$.

Total: 11

[6]

8. The straight line l_1 passes through the point $A(-2,5)$ and the point $B(4,1)$.	
(a) Find an equation for l_1 in the form $ax + by = c$, where a, b and c are integers.	[4]
The straight line l_2 passes through B and is perpendicular to l_1 .	
(b) Find an equation for l_2 .	[3]
Given that l_2 meets the <i>y</i> -axis at the point C ,	
(c) show that triangle ABC is isosceles.	[4]
	Total: 11

$$f'(x) = 1 + \frac{2}{\sqrt{x}}, \quad x > 0.$$

The straight line l has the equation y = 2x - 1 and is a tangent to C at the point P.

(a) State the gradient of C at P .	[1]
(b) Find the x-coordinate of P .	[3]
(c) Find an equation for C .	[6]
(d) Show that C crosses the x-axis at the point $(1,0)$ and at no other point.	[3]
	Total: 13