Solomon Practice Paper

Core Mathematics 1F
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	3	
2	3	
3	4	
4	5	
5	6	
6	8	
7	10	
8	11	
9	12	
Total:	75	

How I can achieve better:

1. Find in exact form the real solutions of the equation

$$
x^{4}=5 x^{2}+14
$$

Last updated: May 5, 2023
2. Express
in the form $a+b \sqrt{5}$ where a and b are rational.

3．（a）Solve the equation $x^{\frac{3}{2}}=27$ ．
（b）Express $\left(2 \frac{1}{4}\right)^{-\frac{1}{2}}$ as an exact fraction in its simplest form． L
4. Figure shows the curve with equation $y=x^{3}+a x^{2}+b x+c$, where a, b and c are constants.

The curve crosses the x-axis at the point $(-1,0)$ and touches the x-axis at the point $(3,0)$.
Show that $a=-5$ and find the values of b and c.
5. Given that

$$
y=\frac{x^{4}-3}{2 x^{2}}
$$

(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{x^{4}-9}{x^{4}}
$$

6. (a) Sketch on the same diagram the curve with equation $y=(x-2)^{2}$ and the straight line with equation $y=2 x-1$.
Label on your sketch the coordinates of any points where each graph meets the coordinate axes.
(b) Find the set of values of x for which

$$
(x-2)^{2}>2 x-1
$$

7. A curve has the equation

$$
y=\frac{x}{2}+3-\frac{1}{x}, x \neq 0 .
$$

The point A on the curve has x-coordinate 2 .
(a) Find the gradient of the curve at A.
(b) Show that the tangent to the curve at A has equation

$$
3 x-4 y+8=0 .
$$

The tangent to the curve at the point B is parallel to the tangent at A.
(c) Find the coordinates of B.
8. The straight line l_{1} has gradient $\frac{3}{2}$ and passes through the point $A(5,3)$.
(a) Find an equation for l_{1} in the form $y=m x+c$.

The straight line l_{2} has the equation $3 x-4 y+3=0$ and intersects l_{1} at the point B.
(b) Find the coordinates of B.
(c) Find the coordinates of the mid-point of $A B$.
(d) Show that the straight line parallel to l_{2} which passes through the mid-point of $A B$ also passes through the origin.
9. The third term of an arithmetic series is $5 \frac{1}{2}$.

The sum of the first four terms of the series is $22 \frac{3}{4}$.
(a) Show that the first term of the series is $6 \frac{1}{4}$ and find the common difference.
(b) Find the number of positive terms in the series.
(c) Hence, find the greatest value of the sum of the first n terms of the series.
10. The curve C has the equation $y=\mathrm{f}(x)$.

Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-\frac{2}{x^{3}}, \quad x \neq 0
$$

and that the point $P(1,1)$ lies on C,
(a) find an equation for the tangent to C at P in the form $y=m x+c$,
(b) find an equation for C,
(c) find the x-coordinates of the points where C meets the x-axis, giving your answers in the form $k \sqrt{2}$.

