L	Question	Points
itaa	1	4
utes	2	4
	3	5
	4	6
YC.club	5	7
	6	8
	7	9
	8	10
	9	11
	10	11

Total:

75

Score

Solomon Practice Paper

Core Mathematics 1A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

- •
- •
- •

1.	(a) Express $\frac{21}{\sqrt{7}}$ in the form $k\sqrt{7}$.	[2]
	(b) Express $8^{-\frac{1}{3}}$ as an exact fraction in its simplest form.	[2]
		Total: 4

2. Evaluate

$$\sum_{r=10}^{30} 7 + 2r$$

www.CasperYC.club

3. Differentiate with respect to \boldsymbol{x}

$$\frac{6x^2 - 1}{2\sqrt{x}}.$$

[5]

www.CasperYC.club

Last updated: May 5, 2023

4. (a) Solve the inequality x² + 3x > 10. [3]
(b) Find the set of values of x which satisfy both of the following inequalities: [3]
3x - 2 < x + 3 and x² + 3x > 10.

Total: 6

www.CasperYC.club

5. The sequence u_1, u_2, u_3, \ldots is defined by the recurrence relation

$$u_{n+1} = (u_n)^2 - 1, \quad n \ge 1.$$

Given that $u_1 = k$, where k is a constant,

(a) find expressions for u_2 and u_3 in terms of k.

Given also that $u_2 + u_3 = 11$,

(b) find the possible values of k.

[4]

[3]

6. (a) By completing the square, find in terms of the constant k the roots of the equation

$$x^2 + 4kx - k = 0.$$

(b) Hence find the set of values of k for which the equation has no real roots. [4]

Total: 8

[4]

7.	(a) Describe fully a single transformation that maps the graph of $y = \frac{1}{x}$ onto the graph of $y = \frac{1}{x}$	$\frac{3}{x}$. [2]
	(b) Sketch the graph of $y = \frac{3}{x}$ and write down the equations of any asymptotes.	[3]
	(c) Find the values of the constant c for which the straight line $y = c - 3x$ is a tangent to the	ne [4]
	curve $y = \frac{3}{x}$.	

Core Mathematics – Practice Paper 1A

8. The points P and Q have coordinates $(7, 4)$ and $(9, 7)$ respectively.	
(a) Find an equation for the straight line l which passes through P and Q . Give your answer in the form $ax + by + c = 0$, where a, b and c are integers.	[4]
The straight line m has gradient 8 and passes through the origin, O .	
(b) Write down an equation for m .	[1]
The lines l and m intersect at the point R .	
(c) Show that $OP = OR$.	[5]
	Total: 10

9. Figure below shows the curve with equation y = f(x) which crosses the x-axis at the origin and at the points A and B.

Given that

$$f'(x) = 6 - 4x - 3x^2,$$

- (a) find an expression for y in terms of x,
- (b) show that $AB = k\sqrt{7}$, where k is an integer to be found.

[6]

[5]

10. A curve has the equation $y = x + \frac{3}{x}, x \neq 0$.

The point P on the curve has x-coordinate 1.

- (a) Show that the gradient of the curve at P is -2. [3]
- (b) Find an equation for the normal to the curve at P, giving your answer in the form y = mx + c. [4]
- (c) Find the coordinates of the point where the normal to the curve at P intersects the curve [4] again.

