## Solomon Practice Paper

Core Mathematics 4H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 5      |       |
| 2        | 6      |       |
| 3        | 8      |       |
| 4        | 8      |       |
| 5        | 8      |       |
| 6        | 10     |       |
| 7        | 14     |       |
| 8        | 16     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





| (a) | Expand $(1+4x)^{\frac{3}{2}}$ in ascending powers of $x$ up to and including the term in $x^3$ , simplifying each coefficient. | [4     |
|-----|--------------------------------------------------------------------------------------------------------------------------------|--------|
| (b) | State the set of values of $x$ for which your expansion is valid.                                                              | [:     |
|     |                                                                                                                                | Total: |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |
|     |                                                                                                                                |        |

[6]

| 2  | Use the | substitution | y = 1 + | $\sin(r)$                | to | find | the | value | οf |
|----|---------|--------------|---------|--------------------------|----|------|-----|-------|----|
| ∠. | ose me  | Substitution | u-1+    | $\operatorname{SIII}(x)$ | w  | ши   | une | varue | OI |

$$\int_0^{\frac{\pi}{2}} \cos(x) (1 + \sin(x))^3 \, \mathrm{d}x.$$



| 3. | (a) | Express |
|----|-----|---------|
|----|-----|---------|

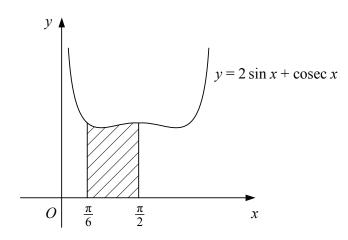
$$\frac{x+11}{(x+4)(x-3)}$$

as a sum of partial fractions.

$$\int_0^2 \frac{x+11}{(x+4)(x-3)} \, \mathrm{d}x,$$

giving your answer in the form ln(k), where k is an exact simplified fraction.

| '] | LO | ta. | l: | 8 |
|----|----|-----|----|---|
|    |    |     |    |   |


[3]

[5]



[8]

4. Figure shows the curve with equation  $y = 2\sin(x) + \csc(x), 0 < x < \pi$ .



The shaded region bounded by the curve, the x-axis and the lines  $x = \frac{\pi}{6}$  and  $x = \frac{\pi}{2}$  is rotated through 360° about the x-axis. Show that the volume of the solid formed is  $\frac{1}{2}\pi(4\pi + 3\sqrt{3})$ .

5. A curve has the equation

$$x^2 - 3xy - y^2 = 12.$$

(a) Find an expression for  $\frac{dy}{dx}$  in terms of x and y.

[5]

(b) Find an equation for the tangent to the curve at the point (2, -2).

[3] Total: 8

|  | - | 003 | • | • |
|--|---|-----|---|---|
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |



6. Relative to a fixed origin, O, the points A and B have position vectors

$$\begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix}$$

respectively.

Find, in exact, simplified form,

- (a) the cosine of  $\angle AOB$ ,
- (b) the area of triangle OAB,
- (c) the shortest distance from A to the line OB.

[4] [2]

Total: 10

7. A curve has parametric equations

$$x = t(t - 1)$$
, and  $y = \frac{4t}{1 - t}$ ,  $t \neq 1$ .

(a) Find  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of t. [4]

The point P on the curve has parameter t = -1.

(b) Show that the tangent to the curve at P has the equation x + 3y + 4 = 0.

[3]

The tangent to the curve at P meets the curve again at the point Q.

(c) Find the coordinates of Q.

[7]

| Total: | 14 |
|--------|----|
|        |    |



8. An entomologist is studying the population of insects in a colony.

Initially there are 300 insects in the colony and in a model, the entomologist assumes that the population, P, at time t weeks satisfies the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP,$$

where k is a constant.

(a) Find an expression for P in terms of k and t.

[5]

Given that after one week there are 360 insects in the colony,

(b) find the value of k to 3 significant figures.

[2]

Given also that after two and three weeks there are 440 and 600 insects respectively,

(c) comment on suitability of the model.

[2]

An alternative model assumes that

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P(0.4 - 0.25\cos(0.5t)).$$

- (d) Using the initial data, P = 300 when t = 0, solve this differential equation. [4]
- (e) Compare the suitability of the two models.

Total: 16

[3]

| 1000 |
|------|
| 50/  |
|      |

| ore Mathematics – Practice Paper 4H | Page 10 of 10 |
|-------------------------------------|---------------|
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |
|                                     |               |

