Solomon Practice Paper

Core Mathematics 4C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	11	
4	11	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:

- •
- •
- •

July 14, 2025

1. Use integration by parts to show that

$$\int_{1}^{2} x \ln(x) \, \mathrm{d}x = 2\ln(2) - \frac{3}{4}.$$

2. (a) Use the trapezium rule with two intervals of equal width to find an approximate value for [5] the integral

$$\int_0^2 \arctan(x) \, \mathrm{d}x.$$

(b) Use the trapezium rule with four intervals of equal width to find an improved approximation [2] for the value of the integral.

Total: 7

3. A curve has the equation

 $3x^2 - 2x + xy + y^2 - 11 = 0.$

The point P on the curve has coordinates (-1,3).

- (a) Show that the normal to the curve at P has the equation y = 2 x. [7]
- (b) Find the coordinates of the point where the normal to the curve at P meets the curve again. [4]

Total: 11

Core Mathematics – Practice Paper 4C

4. The points A and B have coordinates $(3, 9, -7)$ and $(13, -6, -2)$ respectively.	
(a) Find, in vector form, an equation for the line l which passes through A and B .	[2]
(b) Show that the point C with coordinates $(9, 0, -4)$ lies on l.	[2]
The point D is the point on l closest to the origin, O .	
(c) Find the coordinates of D .	[4]
(d) Find the area of triangle OAB to 3 significant figures.	[3]
	Total: 11

www.CasperYC.club

Last updated: July 14, 2025

5. A bath is filled with hot water which is allowed to cool. The temperature of the water is θ° C after cooling for t minutes and the temperature of the room is assumed to remain constant at 20° C.

Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,

(a) write down a differential equation connecting θ and t.

Given also that the temperature of the water is initially 37° C and that it is 36° C after cooling for four minutes,

(b) find, to 3 significant figures, the temperature of the water after ten minutes.

Advice suggests that the temperature of the water should be allowed to cool to 33° C before a child gets in.

(c) Find, to the nearest second, how long a child should wait before getting into the bath.

Total: 13

[2]

[8]

[3]

apperVC slub	Last updated: July 14, 2025	

www.CasperYC.club

6. Figure shows the curve with parametric equations

$$x = 3\sin(t)$$
 and $y = 2\sin(2t)$, $0 \le t < \pi$.

The curve meets the x-axis at the origin, O, and at the point A.

(a) Find the value of t at O and the value of t at A.

The region enclosed by the curve is rotated through π radians about the x-axis.

(b) Show that the volume of the solid formed is given by

$$\int_0^{\frac{\pi}{2}} 12\pi \sin^2(2t) \cos(t) \, \mathrm{d}t$$

(c) Using the substitution $u = \sin(t)$, or otherwise, evaluate this integral, giving your answer [8] as an exact multiple of π .

Total: 13

[2]

[3]

www.CasperYC.club

Last updated: July 14, 2025

	6
	ζ

$$f(x) = \frac{8-x}{(1+x)(2-x)}, \qquad |x| < 1.$$

- (a) Express f(x) in partial fractions.
- (b) Show that

$$\int_0^{\frac{1}{2}} \mathbf{f}(x) \, \mathrm{d}x = \ln(k),$$

where k is an integer to be found.

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in [6] x^3 , simplifying each coefficient.

Total: 14

www.CasperYC.club

Last updated: July 14, 2025

. .

[3] [5]

			6
NO 11	Last updated: July 14, 2	0.05	J

www.CasperYC.club

Last updated: July 14, 2025