Solomon Practice Paper

Core Mathematics 4B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

- •

- •

July 14, 2025

[6] $\int x^2 \sin(x) \, \mathrm{d}x.$

2. Given that y = -2 when x = 1, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \sqrt{x},$$

giving your answer in the form y = f(x).

www.CasperYC.club



3. A curve has the equation

$$4x^2 - 2xy - y^2 + 11 = 0.$$

Find an equation for the normal to the curve at the point with coordinates (-1, -3).

CooperVC club	Last updated: July 14, 2025	
		500

Core Mathematics – Practice Paper 4B

4. (a) Expand

 $(1+ax)^{-3}, \qquad |ax| < 1,$

in ascending powers of x up to and including the term in x^3 . Give each coefficient as simply as possible in terms of the constant a.

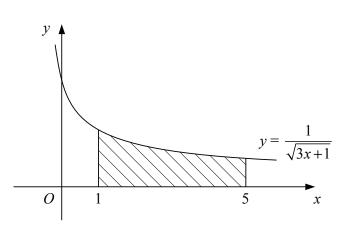
Given that the coefficient of x^2 in the expansion of

$$\frac{6-x}{(1+ax)^3}, \qquad |ax| < 1,$$

is 3,

(b) find the two possible values of a.

Given also that a < 0,


(c) show that the coefficient of
$$x^3$$
 in the expansion of $\frac{6-x}{(1+ax)^3}$ is $\frac{14}{9}$. [2]

Total:	9
--------	---

[4]

		Joe
CosporVC shub	Last updated: July 14, 2025	

5. Figure shows the curve with equation $y = \frac{1}{\sqrt{3x+1}}$.

The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 5.

(a) Find the area of the shaded region.

The shaded region is rotated completely about the x-axis.

(b) Find the volume of the solid formed, giving your answer in the form $k\pi \ln(2)$, where k is a [5] simplified fraction.

Total: 9

[4]

asperYC.club	Last updated: July 14, 2025	
		60

Core Mathematics – Practice Paper 4B

6.

$$\mathbf{f}(x) = \frac{15 - 17x}{(2+x)(1-3x)^2}, \qquad x \neq -2, \ x \neq \frac{1}{3}.$$

(a) Find the values of the constants A, B and C such that

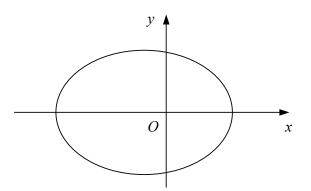
$$f(x) = \frac{A}{2+x} + \frac{B}{1-3x} + \frac{C}{(1-3x)^2}$$

(b) Find the value of

 $\int_{-1}^{0} \mathbf{f}(x) \, \mathrm{d}x,$

giving your answer in the form $p + \ln(q)$, where p and q are integers.

Total: 11


[7]

[4]

		7

7. Figure shows the curve with parametric equations

$$x = -1 + 4\cos(\theta)$$
 and $y = 2\sqrt{2}\sin(\theta)$, $0 \le \theta < 2\pi$.

The point P on the curve has coordinates $(1,\sqrt{6})$.

(a) Find the value of θ at P .	[2]
(b) Show that the normal to the curve at P passes through the origin.	[7]
(c) Find a Cartesian equation for the curve.	[3]
	Total: 12

- 8. The line l₁ passes through the points A and B with position vectors (-3i+3j+2k) and (7i-j+12k) respectively, relative to a fixed origin.
 (a) Find a vector equation for l₁. [2] The line l₂ has the equation
 r = (5j 7k) + µ(i 2j + 7k).
 The point C lies on l₂ and is such that AC is perpendicular to BC.
 (b) Show that one possible position vector for C is i + 3j and find the other. [8] Assuming that C has position vector (i + 3j),
 (c) find the area of triangle ABC, giving your answer in the form k√5. [3]
 - Total: 13