Solomon Practice Paper

Core Mathematics 3H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	7	
4	9	
5	10	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

•

•

•

1. The functions f and g are defined by

$$\begin{aligned} &\mathbf{f} \colon x &\to & 2-x^2, & x \in \mathbb{R}, \\ &\mathbf{g} \colon x &\to & \frac{3x}{2x-1}, & x \in \mathbb{R}, x \neq \frac{1}{2}. \end{aligned}$$

(a) Evaluate fg(2).

[2]

(b) Solve the equation $gf(x) = \frac{1}{2}$.

[4] Total: 6

[7]

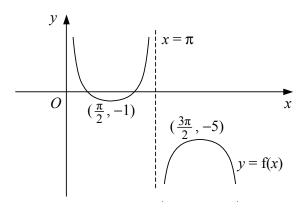
2.	Giving your	answers	to	1	$\operatorname{decimal}$	place,	solve	the	equation	1
----	-------------	---------	----	---	--------------------------	--------	-------	-----	----------	---

$$5\tan^2(2\theta) - 13\sec(2\theta) = 1,$$

for θ in the inter	$\text{rval } 0 \le \theta \le 300^{\circ}.$			

Total: 7

3.	(a) Simplify		[3
		$2x^2 + 3x - 9$	
		$2x^2 - 7x + 6$.	


(b) Solve the equation
$$\ln(2x^2 + 3x - 9) = 2 + \ln(2x^2 - 7x + 6),$$
 [4]

giving your answer in terms of e.	

4. Figure shows the graph of y = f(x).

The graph has a minimum at $(\frac{\pi}{2}, -1)$, a maximum at $(\frac{3\pi}{2}, -5)$ and an asymptote with equation $x = \pi$.

(a) Showing the coordinates of any stationary points, sketch the graph of y = |f(x)|.

[3]

Given that

$$f: x \to a + b \csc(x), \quad x \in \mathbb{R}, 0 < x < 2\pi, x \neq \pi,$$

(b) find the values of the constants a and b,

[3]

[3]

(c) find, to 2 decimal places, the x-coordinates of the points where the graph of y = f(x) crosses the x-axis.

Total: 9

5. The number of bacteria present in a culture at time t hours is modelled by the continuous variable N and the relationship

$$N = 2000e^{kt}$$
,

where k is a constant.

Given that when t = 3, N = 18000, find

(a) the value of k to 3 significant figures,

[3]

(b) how long it takes for the number of bacteria present to double, giving your answer to the nearest minute,

[4]

[3]

(c) t	the rate at	which	the	number	of	bacteria	is	increasing	when	t = 3.
-------	-------------	-------	-----	--------	----	----------	----	------------	------	--------

Total: 10

Last updated: July 14, 2025

6. (a) Use the derivative of cos(x) to prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}\sec(x) = \sec(x)\tan(x).$$

The curve C has the equation

$$y = e^{2x} \sec(x), -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

- (b) Find an equation for the tangent to C at the point where it crosses the y-axis.
- (c) Find, to 2 decimal places, the x-coordinate of the stationary point of C.

[3] Total: 11

[4]

[4]

Last updated: July 14, 2025

7.

$$f(x) = x^2 - 2x + 5, x \in \mathbb{R}, x \ge 1.$$

- (a) Express f(x) in the form $(x+a)^2 + b$, where a and b are constants. [2]
- (b) State the range of f. [1]
- (c) Find an expression for $f^{-1}(x)$. [3]
- (d) Describe fully two transformations that would map the graph of $y = f^{-1}(x)$ onto the graph of $y = \sqrt{x}, x \ge 0$.
- (e) Find an equation for the normal to the curve $y = f^{-1}(x)$ at the point where x = 8. [4]

Total: 12

Last updated: July 14, 2025

		<i>]</i> (

[3]

Total: 13

8. A curve has the equation

$$y = \frac{e^2}{x} + e^x, x \neq 0.$$

- (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. [2]
- (b) Show that the curve has a stationary point in the interval [1.3, 1.4].

The point A on the curve has x-coordinate 2.

(c) Show that the tangent to the curve at A passes through the origin.

[4]

The tangent to the curve at A intersects the curve again at the point B.

The x-coordinate of B is to be estimated using the iterative formula

$$x_{n+1} = -\frac{2}{3}\sqrt{3 + 3x_n e^{x_n - 2}},$$

with $x_0 = -1$.

(d) Find x_1, x_2 and x_3 to 7 significant figures and hence state the x-coordinate of B to 5 [4]significant figures.

Core Mathematics – Practice Paper 3H	Page 14 of 14

