Solomon Practice Paper

Core Mathematics 3G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 7      |       |
| 2        | 9      |       |
| 3        | 10     |       |
| 4        | 10     |       |
| 5        | 12     |       |
| 6        | 13     |       |
| 7        | 14     |       |
| Total:   | 75     |       |

How I can achieve better:

- •
- .
- •



July 14, 2025



A curve has the equation y = (3x - 5)<sup>3</sup>.
 (a) Find an equation for the tangent to the curve at the point P(2, 1).
 The tangent to the curve at the point Q is parallel to the tangent at P.
 (b) Find the coordinates of Q.
 [4] Total: 7



2. (a) Use the identities for  $\cos(A+B)$  and  $\cos(A-B)$  to prove that

$$2\cos(A)\cos(B) \equiv \cos(A+B) + \cos(A-B).$$

(b) Hence, or otherwise, find in terms of  $\pi$  the solutions of the equation

$$2\cos\left(x+\frac{\pi}{2}\right) = \sec\left(x+\frac{\pi}{6}\right),$$

for x in the interval  $0 \le x \le \pi$ .

Total: 9



[7]

3. Differentiate each of the following with respect to x and simplify your answers.

(a) 
$$\ln(\cos(x))$$
 [3]  
(b)  $x^2 \sin(3x)$  [3]  
(c)  $\frac{6}{\sqrt{2x-7}}$  [4]  
Total: 10



www.CasperYC.club

- 4. (a) Express  $2\sin(x^{\circ}) 3\cos(x^{\circ})$  in the form  $R\sin(x-\alpha)^{\circ}$  where R > 0 and  $0^{\circ} < \alpha < 90^{\circ}$ .
  - (b) Show that the equation

$$\csc(x^\circ) + 3\cot(x^\circ) = 2$$

can be written in the form

$$2\sin(x^\circ) - 3\cos(x^\circ) = 1$$

(c) Solve the equation

$$\csc(x^\circ) + 3\cot(x^\circ) = 2,$$

for x in the interval  $0^{\circ} \le x \le 360^{\circ}$ , giving your answers to 1 decimal place.

Total: 10

www.CasperYC.club



[1]

[5]

[4]

## Core Mathematics – Practice Paper 3G

- 5. (a) Show that (2x + 3) is a factor of  $(2x^3 x^2 + 4x + 15)$ .
  - (b) Hence, simplify

$$\frac{2x^2 + x - 3}{2x^3 - x^2 + 4x + 15}.$$
[4]

(c) Find the coordinates of the stationary points of the curve with equation

$$y = \frac{2x^2 + x - 3}{2x^3 - x^2 + 4x + 15}.$$

Total: 12

[2]

[6]



|  | 6 |
|--|---|
|  | ζ |

6. The population in thousands, P, of a town at time t years after 1st January 1980 is modelled by the formula

$$P = 30 + 50e^{0.002t}$$

Use this model to estimate

- (a) the population of the town on 1st January 2010,
- (b) the year in which the population first exceeds 84000.

The population in thousands, Q, of another town is modelled by the formula

$$Q = 26 + 50e^{0.003t}.$$

(c) Show that the value of t when P = Q is a solution of the equation

$$t = 1000 \ln \left( 1 + 0.08 \mathrm{e}^{-0.002t} \right).$$

(d) Use the iteration formula

$$t_{n+1} = 1000 \ln \left( 1 + 0.08 \mathrm{e}^{-0.002 t_n} \right) \,.$$

with  $t_0 = 50$  to find  $t_1, t_2$  and  $t_3$  and hence, the year in which the populations of these two towns will be equal according to these models.

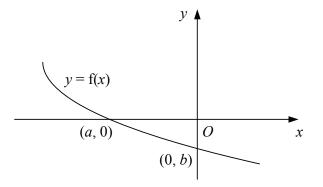
Total: 13

www.CasperYC.club

Last updated: July 14, 2025

[4]

[3]


[2]

[4]

|  | 6   |
|--|-----|
|  |     |
|  | 7 - |

www.CasperYC.club

7. Figure shows the graph of y = f(x) which meets the coordinate axes at the points (a, 0) and (0, b), where a and b are constants.



- (a) Showing, in terms of *a* and *b*, the coordinates of any points of intersection with the axes, [6] sketch on separate diagrams the graphs of
  - i.  $y = f^{-1}(x)$ , ii. y = 2f(3x).

Ŭ

Given that

$$f(x) = 2 - \sqrt{x+9}, \quad x \in \mathbb{R}, \quad x \ge -9,$$

(b) find the values of a and b,

(c) find an expression for  $f^{-1}(x)$  and state its domain.

Total: 14

[3]

[5]

www.CasperYC.club



www.CasperYC.club

Last updated: July 14, 2025