Solomon Practice Paper

Core Mathematics 3B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	9	
3	9	
4	10	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:

- •
- •

[4]

Total: 7

1.	(a) Simplify		[3]
	. ,	$x^2 + 7x + 12$	
		$\frac{1}{2x^2 + 9x + 4}$.	

(b) Solve the equation
$$\ln (x^2 + 7x + 12) - 1 = \ln (2x^2 + 9x + 4),$$

giving your answer in terms of e.

giving your answer in terms	or e.	

2. A curve has the equation $y = \sqrt{3x + 11}$.

The point P on the curve has x-coordinate 3.

(a) Show that the tangent to the curve at P has the equation

[6]

$$3x - 4\sqrt{5}y + 31 = 0.$$

The normal to the curve at P crosses the y-axis at Q.

(b) Find the y-coordinate of Q in the form $k\sqrt{5}$.

[3]

Total: 9

Last updated: July 14, 2025

3. (a) Use the identities for $\sin(A+B)$ and $\sin(A-B)$ to prove that

[4]

$$\sin(P) + \sin(Q) \equiv 2\sin\left(\frac{P+Q}{2}\right)\cos\left(\frac{P-Q}{2}\right).$$

[5]

(b) Find, in terms of π , the solutions of the equation

$$\sin(5x) + \sin(x) = 0,$$

for x in the interval $0 \le x < \pi$.

Total: 9

100
50

4. The curve with equation

$$y = x^{\frac{5}{2}} \ln \left(\frac{x}{4}\right), x > 0$$

crosses the x-axis at the point P.

(a) Write down the coordinates of P.

[1]

The normal to the curve at P crosses the y-axis at the point Q.

(b) Find the area of triangle OPQ where O is the origin.

[6]

The curve has a stationary point at R.

(c) Find the x-coordinate of R in exact form.

[3] Total: 10

[3]

[4]

Total: 13

5.

$$f(x) \equiv 2x^2 + 4x + 2, \quad x \in \mathbb{R}, x \ge -1.$$

- (a) Express f(x) in the form $a(x+b)^2 + c$. [2]
- (b) Describe fully two transformations that would map the graph of $y = x^2, x \ge 0$ onto the graph of y = f(x).
- (c) Find an expression for $f^{-1}(x)$ and state its domain. [4]
- (d) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram and state the relationship between them.

Last updated: July 14, 2025

6.

$$f(x) = e^{3x+1} - 2, \quad x \in \mathbb{R}.$$

(a) State the range of f.

[1]

The curve y = f(x) meets the y-axis at the point P and the x-axis at the point Q.

(b) Find the exact coordinates of P and Q.

[4]

(c) Show that the tangent to the curve at P has the equation

[4]

$$y = 3ex + e - 2.$$

(d) Find to 3 significant figures the x-coordinate of the point where the tangent to the curve at [4] P meets the tangent to the curve at Q.

_	LO	ta.	l:	Ι;

Last updated: July 14, 2025

7. (a) Solve the equation

$$\pi - 3\cos^{-1}(\theta) = 0.$$

(b) Sketch on the same diagram the curves

[5]

[2]

$$y = \cos^{-1}(x-1)$$
, $0 \le x \le 2$, and $y = \sqrt{x+2}$, $x \ge -2$.

Given that α is the root of the equation

$$\cos^{-1}(x-1) = \sqrt{x+2},$$

- (c) show that $0 < \alpha < 1$, [3]
- (d) use the iterative formula [4]

$$x_{n+1} = 1 + \cos\left(\sqrt{x_n + 2}\right)$$

Last updated: July 14, 2025

with $x_0 = 1$ to find α correct to 3 decimal places.

Total: 14

