Solomon Practice Paper

Core Mathematics 2D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

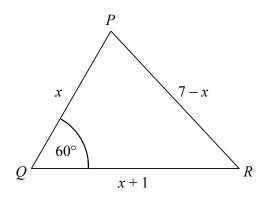
Question	Points	Score
1	4	
2	4	
3	6	
4	8	
5	8	
6	9	
7	9	
8	13	
9	14	
Total:	75	

How I can achieve better:

•

•

•



[4]

[4]

2. Figure shows triangle PQR in which $PQ=x,\,PR=7-x,\,QR=x+1$ and $PQR=60^{\circ}.$

Using the cosine rule, find the value of x.

[6]

3.	Find the	coordinates o	f the	stationary	point	of th	e curve	with	equation
----	----------	---------------	-------	------------	-------	-------	---------	------	----------

$$y = x + \frac{4}{x^2}.$$



Last updated: July 14, 2025

[8]

1	Find all	values	of r	in	the	interval	0°	<	r <	360°	for	which
±.	r ma an	varues	or x	III	une	muervar	U	\ J	ι<	500	101	WILLCII

$$2\sin^2(x) - 2\cos(x) - \cos^2(x) = 1.$$

- 5. (a) Sketch the curve $y = 5^{x-1}$, showing the coordinates of any points of intersection with the coordinate axes.
 - [2]

[6]

- (b) Find, to 3 significant figures, the x-coordinates of the points where the curve $y = 5^{x-1}$ intersects
 - i. the straight line y = 10,
 - ii. the curve $y = 2^x$.

Total: 8

6.

$$f(x) = 2x^3 + 3x^2 - 6x + 1.$$

(a) Find the remainder when f(x) is divided by (2x-1).

[2]

(b) i. Find the remainder when f(x) is divided by (x + 2).

[7]

ii. Hence, or otherwise, solve the equation $2x^3 + 3x^2 - 6x - 8 = 0$, giving your answers to 2 decimal places where appropriate.

Total: 9

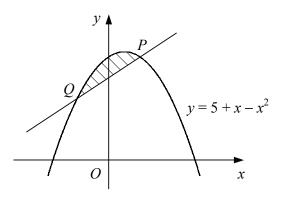
Last updated: July 14, 2025

7. (a) Prove that the sum of the first n terms of a geometric series with first term a and common ratio r is given by

$$\frac{a(1-r^n)}{1-r}.$$

(b) Evaluate $\sum_{r=1}^{12} 5 \times 2^r$.

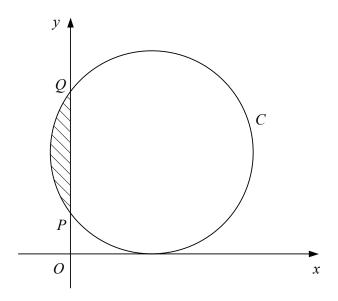
[5]


Total: 9

[5]

[2]

8. Figure shows the curve with equation $y = 5 + x - x^2$ and the normal to the curve at the point P(1,5).


- (a) Find an equation for the normal to the curve at P in the form y = mx + c.
- (b) Find the coordinates of the point Q, where the normal to the curve at P intersects the curve again.
- (c) Show that the area of the shaded region bounded by the curve and the straight line PQ is $\frac{4}{3}$.

Total: 13

9. Figure shows the circle C with equation

$$x^2 + y^2 - 8x - 10y + 16 = 0.$$

(a) Find the coordinates of the centre and the radius of C.

[3]

C crosses the y-axis at the points P and Q.

(b) Find the coordinates of P and Q.

[3]

The chord PQ subtends an angle of θ at the centre of C.

(c) Using the cosine rule, show that $\cos(\theta) = \frac{7}{25}$.

[4]

[4]

(d) Find the area of the shaded minor segment bounded by C and the chord PQ.

Total: 14

Core Mathematics – Practice Paper 2D	Page 10 of 10

