

Edexcel (U.K.) Pre 2017

Questions By Topic

C4 Chap05 Vectors

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

[www.CasperYC.club](http://www.CasperYC.club)

Last updated: February 7, 2026



DrYuFromShanghai@QQ.com

Leave  
blank

7. The line  $l_1$  has vector equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$

and the line  $l_2$  has vector equation

$$\mathbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},$$

where  $\lambda$  and  $\mu$  are parameters.

The lines  $l_1$  and  $l_2$  intersect at the point  $B$  and the acute angle between  $l_1$  and  $l_2$  is  $\theta$ .

(a) Find the coordinates of  $B$ .

(4)

(b) Find the value of  $\cos \theta$ , giving your answer as a simplified fraction.

(4)

The point  $A$ , which lies on  $l_1$ , has position vector  $\mathbf{a} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ .

The point  $C$ , which lies on  $l_2$ , has position vector  $\mathbf{c} = 5\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ .

The point  $D$  is such that  $ABCD$  is a parallelogram.

(c) Show that  $|\overrightarrow{AB}| = |\overrightarrow{BC}|$ .

(3)

(d) Find the position vector of the point  $D$ .

(2)

Leave  
blank

6. The line  $l_1$  has vector equation

$$\mathbf{r} = 8\mathbf{i} + 12\mathbf{j} + 14\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

where  $\lambda$  is a parameter.

The point  $A$  has coordinates  $(4, 8, a)$ , where  $a$  is a constant. The point  $B$  has coordinates  $(b, 13, 13)$ , where  $b$  is a constant. Points  $A$  and  $B$  lie on the line  $l_1$ .

(a) Find the values of  $a$  and  $b$ .

(3)

Given that the point  $O$  is the origin, and that the point  $P$  lies on  $l_1$  such that  $OP$  is perpendicular to  $l_1$ ,

(b) find the coordinates of  $P$ .

(5)

(c) Hence find the distance  $OP$ , giving your answer as a simplified surd.

(2)

Leave  
blank

5. The point  $A$ , with coordinates  $(0, a, b)$  lies on the line  $l_1$ , which has equation

$$\mathbf{r} = 6\mathbf{i} + 19\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}).$$

(a) Find the values of  $a$  and  $b$ .

(3)

The point  $P$  lies on  $l_1$  and is such that  $OP$  is perpendicular to  $l_1$ , where  $O$  is the origin.

(b) Find the position vector of point  $P$ .

(6)

Given that  $B$  has coordinates  $(5, 15, 1)$ ,

(c) show that the points  $A$ ,  $P$  and  $B$  are collinear and find the ratio  $AP:PB$ .

(4)

Leave  
blank

7. The point  $A$  has position vector  $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$  and the point  $B$  has position vector  $\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$ , relative to an origin  $O$ .

(a) Find the position vector of the point  $C$ , with position vector  $\mathbf{c}$ , given by

$$\mathbf{c} = \mathbf{a} + \mathbf{b}. \quad (1)$$

(b) Show that  $OACB$  is a rectangle, and find its exact area.

(6)

The diagonals of the rectangle,  $AB$  and  $OC$ , meet at the point  $D$ .

(c) Write down the position vector of the point  $D$ .

(1)

(d) Find the size of the angle  $ADC$ .

(6)

Leave  
blank

5.

The line  $l_1$  has equation  $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ .

The line  $l_2$  has equation  $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ .

(a) Show that  $l_1$  and  $l_2$  do not meet.

(4)

The point  $A$  is on  $l_1$  where  $\lambda = 1$ , and the point  $B$  is on  $l_2$  where  $\mu = 2$ .

(b) Find the cosine of the acute angle between  $AB$  and  $l_1$ .

(6)

6. The points  $A$  and  $B$  have position vectors  $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$  and  $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$  respectively.

The line  $l_1$  passes through the points  $A$  and  $B$ .

(a) Find the vector  $\overrightarrow{AB}$ .

(2)

(b) Find a vector equation for the line  $l_1$ .

(2)

A second line  $l_2$  passes through the origin and is parallel to the vector  $\mathbf{i} + \mathbf{k}$ . The line  $l_1$  meets the line  $l_2$  at the point  $C$ .

(c) Find the acute angle between  $l_1$  and  $l_2$ .

(3)

(d) Find the position vector of the point  $C$ .

(4)

Leave  
blank

6. With respect to a fixed origin  $O$ , the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1: \quad \mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$$

$$l_2: \quad \mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$$

where  $\lambda$  and  $\mu$  are scalar parameters.

(a) Show that  $l_1$  and  $l_2$  meet and find the position vector of their point of intersection. (6)

(b) Show that  $l_1$  and  $l_2$  are perpendicular to each other. (2)

The point  $A$  has position vector  $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$ .

(c) Show that  $A$  lies on  $l_1$ . (1)

The point  $B$  is the image of  $A$  after reflection in the line  $l_2$ .

(d) Find the position vector of  $B$ . (3)

Leave  
blank

4. With respect to a fixed origin  $O$  the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1: \quad \mathbf{r} = \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} \quad l_2: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix}$$

where  $\lambda$  and  $\mu$  are parameters and  $p$  and  $q$  are constants. Given that  $l_1$  and  $l_2$  are perpendicular,

(a) show that  $q = -3$ .

(2)

Given further that  $l_1$  and  $l_2$  intersect, find

(b) the value of  $p$ ,

(6)

(c) the coordinates of the point of intersection.

(2)

The point  $A$  lies on  $l_1$  and has position vector  $\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}$ . The point  $C$  lies on  $l_2$ .

Given that a circle, with centre  $C$ , cuts the line  $l_1$  at the points  $A$  and  $B$ ,

(d) find the position vector of  $B$ .

(3)

7. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $(8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k})$ , the point  $B$  has position vector  $(10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k})$ , and the point  $C$  has position vector  $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$ .

Leave  
blank

The line  $l$  passes through the points  $A$  and  $B$ .

(a) Find a vector equation for the line  $l$ . (3)

(b) Find  $|\overrightarrow{CB}|$ . (2)

(c) Find the size of the acute angle between the line segment  $CB$  and the line  $l$ , giving your answer in degrees to 1 decimal place. (3)

(d) Find the shortest distance from the point  $C$  to the line  $l$ . (3)

The point  $X$  lies on  $l$ . Given that the vector  $\overrightarrow{CX}$  is perpendicular to  $l$ ,

(e) find the area of the triangle  $CXB$ , giving your answer to 3 significant figures. (3)

Leave  
blank

4. The line  $l_1$  has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$

and the line  $l_2$  has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

where  $\lambda$  and  $\mu$  are parameters.

The lines  $l_1$  and  $l_2$  intersect at the point  $A$  and the acute angle between  $l_1$  and  $l_2$  is  $\theta$ .

(a) Write down the coordinates of  $A$ .

(1)

(b) Find the value of  $\cos \theta$ .

(3)

The point  $X$  lies on  $l_1$  where  $\lambda = 4$ .

(c) Find the coordinates of  $X$ .

(1)

(d) Find the vector  $\overrightarrow{AX}$ .

(2)

(e) Hence, or otherwise, show that  $|\overrightarrow{AX}| = 4\sqrt{26}$ .

(2)

The point  $Y$  lies on  $l_2$ . Given that the vector  $\overrightarrow{YX}$  is perpendicular to  $l_1$ ,

(f) find the length of  $AY$ , giving your answer to 3 significant figures.

(3)

Leave  
blank

7. The line  $l_1$  has equation  $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ , where  $\lambda$  is a scalar parameter.

The line  $l_2$  has equation  $\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$ , where  $\mu$  is a scalar parameter.

Given that  $l_1$  and  $l_2$  meet at the point  $C$ , find

(a) the coordinates of  $C$ .

(3)

The point  $A$  is the point on  $l_1$  where  $\lambda = 0$  and the point  $B$  is the point on  $l_2$  where  $\mu = -1$ .

(b) Find the size of the angle  $ACB$ . Give your answer in degrees to 2 decimal places.

(4)

(c) Hence, or otherwise, find the area of the triangle  $ABC$ .

(5)

4. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$  and the point  $B$  has position vector  $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ . The points  $A$  and  $B$  lie on a straight line  $l$ .

(a) Find  $\vec{AB}$ .

(2)

(b) Find a vector equation of  $l$ .

(2)

The point  $C$  has position vector  $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$  with respect to  $O$ , where  $p$  is a constant. Given that  $AC$  is perpendicular to  $l$ , find

(c) the value of  $p$ ,

(4)

(d) the distance  $AC$ .

(2)

Leave  
blank

Leave  
blank

6. With respect to a fixed origin  $O$ , the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1: \quad \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \quad l_2: \quad \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

where  $\lambda$  and  $\mu$  are scalar parameters.

(a) Show that  $l_1$  and  $l_2$  meet and find the position vector of their point of intersection  $A$ . (6)

(b) Find, to the nearest  $0.1^\circ$ , the acute angle between  $l_1$  and  $l_2$ . (3)

The point  $B$  has position vector  $\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$ .

(c) Show that  $B$  lies on  $l_1$ . (1)

(d) Find the shortest distance from  $B$  to the line  $l_2$ , giving your answer to 3 significant figures.

7. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$ , the point  $B$  has position vector  $(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k})$ , and the point  $D$  has position vector  $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ .

Leave  
blank

The line  $l$  passes through the points  $A$  and  $B$ .

(a) Find the vector  $\overrightarrow{AB}$ . (2)

(b) Find a vector equation for the line  $l$ . (2)

(c) Show that the size of the angle  $BAD$  is  $109^\circ$ , to the nearest degree. (4)

The points  $A$ ,  $B$  and  $D$ , together with a point  $C$ , are the vertices of the parallelogram  $ABCD$ , where  $\overrightarrow{AB} = \overrightarrow{DC}$ .

(d) Find the position vector of  $C$ . (2)

(e) Find the area of the parallelogram  $ABCD$ , giving your answer to 3 significant figures. (3)

(f) Find the shortest distance from the point  $D$  to the line  $l$ , giving your answer to 3 significant figures. (2)

8. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $(10\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ , and the point  $B$  has position vector  $(8\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$ .

Leave  
blank

The line  $l$  passes through the points  $A$  and  $B$ .

(a) Find the vector  $\overrightarrow{AB}$ .

(2)

(b) Find a vector equation for the line  $l$ .

(2)

The point  $C$  has position vector  $(3\mathbf{i} + 12\mathbf{j} + 3\mathbf{k})$ .

The point  $P$  lies on  $l$ . Given that the vector  $\overrightarrow{CP}$  is perpendicular to  $l$ ,

(c) find the position vector of the point  $P$ .

(6)

Leave  
blank

7. With respect to a fixed origin  $O$ , the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1 : \mathbf{r} = (9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k}) + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$

$$l_2 : \mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$$

where  $\lambda$  and  $\mu$  are scalar parameters.

(a) Given that  $l_1$  and  $l_2$  meet, find the position vector of their point of intersection.

(5)

(b) Find the acute angle between  $l_1$  and  $l_2$ , giving your answer in degrees to 1 decimal place.

(3)

Given that the point  $A$  has position vector  $4\mathbf{i} + 16\mathbf{j} - 3\mathbf{k}$  and that the point  $P$  lies on  $l_1$  such that  $AP$  is perpendicular to  $l_1$ ,

(c) find the exact coordinates of  $P$ .

(6)

Leave  
blank

8. With respect to a fixed origin  $O$ , the line  $l$  has equation

$$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \text{ where } \lambda \text{ is a scalar parameter.}$$

The point  $A$  lies on  $l$  and has coordinates  $(3, -2, 6)$ .

The point  $P$  has position vector  $(-p\mathbf{i} + 2p\mathbf{k})$  relative to  $O$ , where  $p$  is a constant.

Given that vector  $\overrightarrow{PA}$  is perpendicular to  $l$ ,

(a) find the value of  $p$ .

(4)

Given also that  $B$  is a point on  $l$  such that  $\angle BPA = 45^\circ$ ,

(b) find the coordinates of the two possible positions of  $B$ .

(5)

6. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k}$  and the point  $B$  has position vector  $25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}$ .

Leave  
blank

The line  $l$  has vector equation

$$\mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$$

where  $a$ ,  $b$  and  $c$  are constants and  $\lambda$  is a parameter.

Given that the point  $A$  lies on the line  $l$ ,

(a) find the value of  $a$ .

(3)

Given also that the vector  $\overrightarrow{AB}$  is perpendicular to  $l$ ,

(b) find the values of  $b$  and  $c$ ,

(5)

(c) find the distance  $AB$ .

(2)

The image of the point  $B$  after reflection in the line  $l$  is the point  $B'$ .

(d) Find the position vector of the point  $B'$ .

(2)

Leave  
blank

8. Relative to a fixed origin  $O$ , the point  $A$  has position vector  $\begin{pmatrix} -2 \\ 4 \\ 7 \end{pmatrix}$

and the point  $B$  has position vector  $\begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix}$

The line  $l_1$  passes through the points  $A$  and  $B$ .

(a) Find the vector  $\vec{AB}$ .

(2)

(b) Hence find a vector equation for the line  $l_1$

(1)

The point  $P$  has position vector  $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$

Given that angle  $PBA$  is  $\theta$ ,

(c) show that  $\cos\theta = \frac{1}{3}$

(3)

The line  $l_2$  passes through the point  $P$  and is parallel to the line  $l_1$

(d) Find a vector equation for the line  $l_2$

(2)

The points  $C$  and  $D$  both lie on the line  $l_2$

Given that  $AB = PC = DP$  and the  $x$  coordinate of  $C$  is positive,

(e) find the coordinates of  $C$  and the coordinates of  $D$ .

(3)

(f) find the exact area of the trapezium  $ABCD$ , giving your answer as a simplified surd.

(4)

---



---



---



---



---



---



---



---



---



---



---

Leave  
blank

4. With respect to a fixed origin  $O$ , the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \quad l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$$

where  $\lambda$  and  $\mu$  are scalar parameters and  $p$  is a constant.

The lines  $l_1$  and  $l_2$  intersect at the point  $A$ .

(a) Find the coordinates of  $A$ . (2)

(b) Find the value of the constant  $p$ . (3)

(c) Find the acute angle between  $l_1$  and  $l_2$ , giving your answer in degrees to 2 decimal places. (3)

The point  $B$  lies on  $l_2$  where  $\mu = 1$

(d) Find the shortest distance from the point  $B$  to the line  $l_1$ , giving your answer to 3 significant figures. (3)