

Edexcel (U.K.) Pre 2017

Questions By Topic

C4 Chap04 Differentiation

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

2. A curve has equation

$$x^2 + 2xy - 3y^2 + 16 = 0.$$

Find the coordinates of the points on the curve where $\frac{dy}{dx} = 0$.

(7)

Q2

(Total 7 marks)

Leave
blank

1. A curve C is described by the equation

$$3x^2 + 4y^2 - 2x + 6xy - 5 = 0.$$

Find an equation of the tangent to C at the point $(1, -2)$, giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.

(7)

Leave
blank

1. A curve C is described by the equation

$$3x^2 - 2y^2 + 2x - 3y + 5 = 0.$$

Find an equation of the normal to C at the point $(0, 1)$, giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.

(7)

Leave
blank

3. A curve has parametric equations

$$x = 7 \cos t - \cos 7t, \quad y = 7 \sin t - \sin 7t, \quad \frac{\pi}{8} < t < \frac{\pi}{3}.$$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t . You need not simplify your answer.

(3)

(b) Find an equation of the normal to the curve at the point where $t = \frac{\pi}{6}$.

Give your answer in its simplest exact form.

(6)

Leave
blank

5. A set of curves is given by the equation $\sin x + \cos y = 0.5$.

(a) Use implicit differentiation to find an expression for $\frac{dy}{dx}$.

(2)

For $-\pi < x < \pi$ and $-\pi < y < \pi$,

(b) find the coordinates of the points where $\frac{dy}{dx} = 0$.

(5)

Leave
blank

6. (a) Given that $y = 2^x$, and using the result $2^x = e^{x \ln 2}$, or otherwise, show that $\frac{dy}{dx} = 2^x \ln 2$. (2)

(b) Find the gradient of the curve with equation $y = 2^{(x^2)}$ at the point with coordinates $(2, 16)$.

(4)

5. A curve is described by the equation

Leave
blank

$$x^3 - 4y^2 = 12xy.$$

(a) Find the coordinates of the two points on the curve where $x = -8$.

(3)

(b) Find the gradient of the curve at each of these points.

(6)

4. A curve has equation $3x^2 - y^2 + xy = 4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q .

(a) Use implicit differentiation to show that $y - 2x = 0$ at P and at Q .

(6)

(b) Find the coordinates of P and Q .

(3)

Leave
blank

1. A curve C has the equation $y^2 - 3y = x^3 + 8$.

(a) Find $\frac{dy}{dx}$ in terms of x and y .

(4)

(b) Hence find the gradient of C at the point where $y = 3$.

(3)

Leave
blank

4. The curve C has the equation $ye^{-2x} = 2x + y^2$.

(a) Find $\frac{dy}{dx}$ in terms of x and y .

(5)

The point P on C has coordinates $(0, 1)$.

(b) Find the equation of the normal to C at P , giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.

(4)

Leave
blank

3. The curve C has the equation

$$\cos 2x + \cos 3y = 1, \quad -\frac{\pi}{4} \leq x \leq \frac{\pi}{4}, \quad 0 \leq y \leq \frac{\pi}{6}$$

(a) Find $\frac{dy}{dx}$ in terms of x and y .

The point P lies on C where $x = \frac{\pi}{6}$.

(b) Find the value of y at P .

(c) Find the equation of the tangent to C at P , giving your answer in the form $ax + by + c\pi = 0$, where a , b and c are integers.

Leave
blank

(3)

(3)

(3)

3. A curve C has equation

$$2^x + y^2 = 2xy$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates $(3, 2)$.

(7)

Leave
blank

5. Find the gradient of the curve with equation

$$\ln y = 2x \ln x, \quad x > 0, y > 0$$

at the point on the curve where $x = 2$. Give your answer as an exact value.

(7)

Leave
blank

1. The curve C has the equation $2x + 3y^2 + 3x^2y = 4x^2$.
The point P on the curve has coordinates $(-1, 1)$.

(a) Find the gradient of the curve at P . (5)

(b) Hence find the equation of the normal to C at P , giving your answer in the form $ax + by + c = 0$, where a , b and c are integers. (3)

Leave
blank

5. The curve C has equation

Leave
blank

$$16y^3 + 9x^2y - 54x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y .

(5)

(b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$.

(7)

7. A curve is described by the equation

$$x^2 + 4xy + y^2 + 27 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y .

(5)

A point Q lies on the curve.

The tangent to the curve at Q is parallel to the y -axis.

Given that the x coordinate of Q is negative,

(b) use your answer to part (a) to find the coordinates of Q .

(7)

2. The curve C has equation

$$3^{x-1} + xy - y^2 + 5 = 0$$

Show that $\frac{dy}{dx}$ at the point $(1, 3)$ on the curve C can be written in the form $\frac{1}{\lambda} \ln(\mu e^3)$,

where λ and μ are integers to be found.

(7)

Leave
blank

1. A curve C has the equation

$$x^3 + 2xy - x - y^3 - 20 = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y .

(5)

(b) Find an equation of the tangent to C at the point $(3, -2)$, giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.

(2)

Leave
blank