

Edexcel (U.K.) Pre 2017

Questions By Topic

C4 Chap03 Binomial Expansion

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

5.

$$f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^2} = \frac{A}{(1-3x)} + \frac{B}{(2+x)} + \frac{C}{(2+x)^2}, \quad |x| < \frac{1}{3}.$$

(a) Find the values of A and C and show that $B = 0$. (4)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^3 . Simplify each term. (7)

Leave
blank

$$2. \quad f(x) = \frac{3x-1}{(1-2x)^2}, \quad |x| < \frac{1}{2}.$$

Given that, for $x \neq \frac{1}{2}$, $\frac{3x-1}{(1-2x)^2} = \frac{A}{(1-2x)} + \frac{B}{(1-2x)^2}$, where A and B are constants,

(a) find the values of A and B .

(3)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^3 , simplifying each term.

(6)

3.

$$f(x) = \frac{27x^2 + 32x + 16}{(3x + 2)^2(1 - x)}, \quad |x| < \frac{2}{3}$$

Leave
blank

Given that $f(x)$ can be expressed in the form

$$f(x) = \frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)},$$

(a) find the values of B and C and show that $A = 0$. (4)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^2 . Simplify each term. (6)

(c) Find the percentage error made in using the series expansion in part (b) to estimate the value of $f(0.2)$. Give your answer to 2 significant figures. (4)

Leave
blank

$$5. \quad \frac{2x^2+5x-10}{(x-1)(x+2)} \equiv A + \frac{B}{x-1} + \frac{C}{x+2}$$

(a) Find the values of the constants A , B and C .

(4)

(b) Hence, or otherwise, expand $\frac{2x^2 + 5x - 10}{(x-1)(x+2)}$ in ascending powers of x , as far as the term in x^2 . Give each coefficient as a simplified fraction.

(7)

Leave
blank

1. Use the binomial theorem to expand

$$\sqrt{4-9x}, \quad |x| < \frac{4}{9},$$

in ascending powers of x , up to and including the term in x^3 , simplifying each term.

(5)

Q1

(Total 5 marks)

Leave
blank

$$1. \quad f(x) = (2 - 5x)^{-2}, \quad |x| < \frac{2}{5}.$$

Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term in x^3 , giving each coefficient as a simplified fraction.

(5)

Leave
blank

$$1. \quad f(x) = (3+2x)^{-3}, \quad |x| < \frac{3}{2}.$$

Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term in x^3 .

Give each coefficient as a simplified fraction.

(5)

2. (a) Use the binomial theorem to expand

$$(8-3x)^{\frac{1}{3}}, \quad |x| < \frac{8}{3},$$

in ascending powers of x , up to and including the term in x^3 , giving each term as a simplified fraction.

(5)

(b) Use your expansion, with a suitable value of x , to obtain an approximation to $\sqrt[3]{7.7}$. Give your answer to 7 decimal places.

(2)

Leave
blank

Leave
blank

5. (a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $|x| < \frac{4}{3}$, in ascending powers of x up to and including the term in x^2 . Simplify each term. (5)

(5)

(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{4-3x}}$ as a series in ascending powers of x . (4)

(4)

1.

$$f(x) = \frac{1}{\sqrt{4+x}}, \quad |x| < 4$$

Find the binomial expansion of $f(x)$ in ascending powers of x , up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(6)

Leave
blank

Leave
blank

1. (a) Find the binomial expansion of

$$\sqrt{(1-8x)}, \quad |x| < \frac{1}{8},$$

in ascending powers of x up to and including the term in x^3 , simplifying each term

(4)

(b) Show that, when $x = \frac{1}{100}$, the exact value of $\sqrt{1-8x}$ is $\frac{\sqrt{23}}{5}$.

(2)

(c) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places.

(3)

Leave
blank

5. (a) Use the binomial theorem to expand

$$(2-3x)^{-2}, \quad |x| < \frac{2}{3},$$

in ascending powers of x , up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(5)

$$f(x) = \frac{a+bx}{(2-3x)^2}, \quad |x| < \frac{2}{3}, \quad \text{where } a \text{ and } b \text{ are constants.}$$

In the binomial expansion of $f(x)$, in ascending powers of x , the coefficient of x is 0 and the coefficient of x^2 is $\frac{9}{16}$. Find

(b) the value of a and the value of b ,

(5)

(c) the coefficient of x^3 , giving your answer as a simplified fraction.

(3)

2.

$$f(x) = \frac{1}{\sqrt{(9+4x^2)}} , \quad |x| < \frac{3}{2}$$

Find the first three non-zero terms of the binomial expansion of $f(x)$ in ascending powers of x . Give each coefficient as a simplified fraction.

(6)

Leave
blank

3. (a) Expand

$$\frac{1}{(2-5x)^2}, \quad |x| < \frac{2}{5}$$

Leave
blank

in ascending powers of x , up to and including the term in x^2 , giving each term as a simplified fraction.

(5)

Given that the binomial expansion of $\frac{2+kx}{(2-5x)^2}$, $|x| < \frac{2}{5}$, is

$$\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots$$

(b) find the value of the constant k ,

(2)

(c) find the value of the constant A .

(2)

3.

$$f(x) = \frac{6}{\sqrt{(9 - 4x)}}, \quad |x| < \frac{9}{4}$$

Leave
blank

(a) Find the binomial expansion of $f(x)$ in ascending powers of x , up to and including the term in x^3 . Give each coefficient in its simplest form.

(6)

Use your answer to part (a) to find the binomial expansion in ascending powers of x , up to and including the term in x^3 , of

(b) $g(x) = \frac{6}{\sqrt{(9 + 4x)}}, \quad |x| < \frac{9}{4}$ (1)

(c) $h(x) = \frac{6}{\sqrt{(9 - 8x)}}, \quad |x| < \frac{9}{8}$ (2)

1. Given

$$f(x) = (2 + 3x)^{-3}, \quad |x| < \frac{2}{3}$$

find the binomial expansion of $f(x)$, in ascending powers of x , up to and including the term in x^3 .

Give each coefficient as a simplified fraction.

(5)

Leave
blank

2. (a) Use the binomial expansion to show that

Leave
blank

$$\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1 + x + \frac{1}{2}x^2, \quad |x| < 1 \quad (6)$$

(b) Substitute $x = \frac{1}{26}$ into

$$\sqrt{\left(\frac{1+x}{1-x}\right)} = 1+x + \frac{1}{2}x^2$$

to obtain an approximation to $\sqrt{3}$

Give your answer in the form $\frac{a}{b}$ where a and b are integers.

4. (a) Find the binomial expansion of

$$\sqrt[3]{(8 - 9x)}, \quad |x| < \frac{8}{9}$$

in ascending powers of x , up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(6)

(b) Use your expansion to estimate an approximate value for $\sqrt[3]{7100}$, giving your answer to 4 decimal places. State the value of x , which you use in your expansion, and show all your working.

(3)

Leave
blank