

Edexcel (U.K.) Pre 2017

Questions By Topic

C4 Chap02 Coordinate Geometry and Chap4
Parametric

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

6. A curve has parametric equations

$$x = 2 \cot t, \quad y = 2 \sin^2 t, \quad 0 < t \leq \frac{\pi}{2}.$$

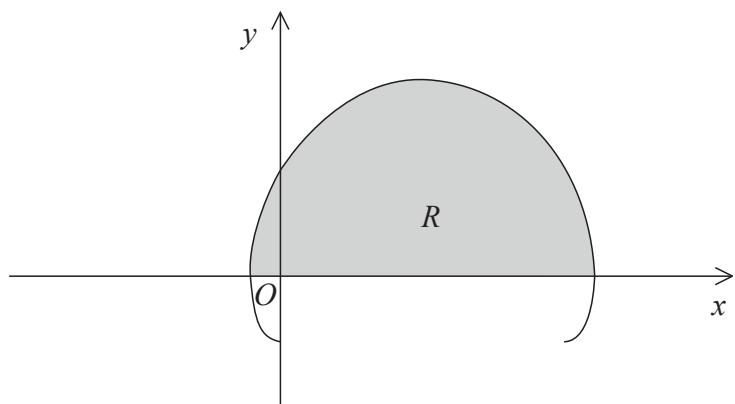
(a) Find an expression for $\frac{dy}{dx}$ in terms of the parameter t . (4)

(b) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$. (4)

(c) Find a cartesian equation of the curve in the form $y = f(x)$. State the domain on which the curve is defined. (4)

8.

Figure 2



Leave
blank

The curve shown in Figure 2 has parametric equations

$$x = t - 2 \sin t, \quad y = 1 - 2 \cos t, \quad 0 \leq t \leq 2\pi.$$

(a) Show that the curve crosses the x -axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$.

The finite region R is enclosed by the curve and the x -axis, as shown shaded in Figure 2.

(b) Show that the area of R is given by the integral

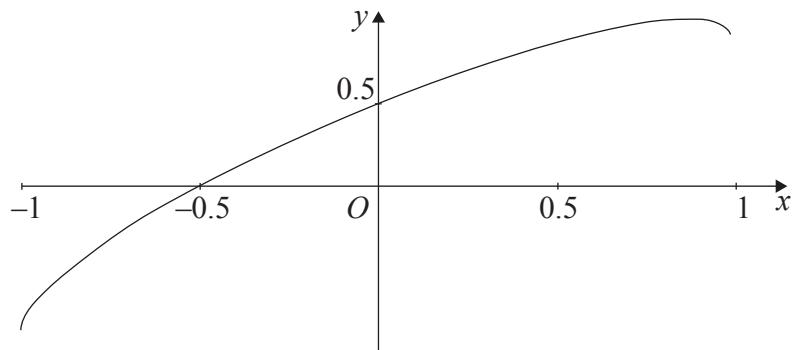
$$\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2 \cos t)^2 dt \quad (3)$$

(c) Use this integral to find the exact value of the shaded area.

(7)

4.

Figure 2



Leave
blank

The curve shown in Figure 2 has parametric equations

$$x = \sin t, \quad y = \sin(t + \frac{\pi}{6}), \quad -\frac{\pi}{2} < t < \frac{\pi}{2}.$$

(a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$.

(6)

(b) Show that a cartesian equation of the curve is

$$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}, \quad -1 < x < 1.$$

(3)

Leave
blank

6. A curve has parametric equations

$$x = \tan^2 t, \quad y = \sin t, \quad 0 < t < \frac{\pi}{2}.$$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t . You need not simplify your answer. (3)

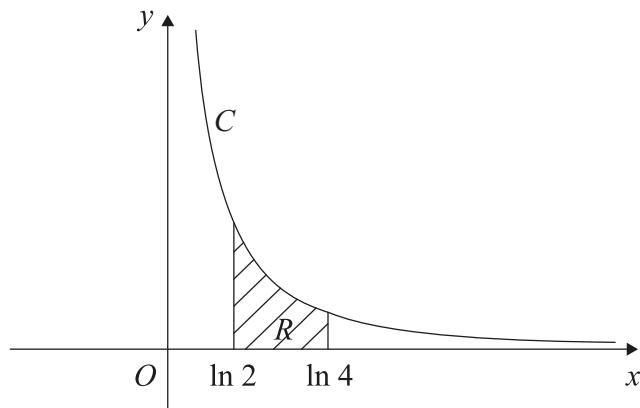
(b) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$.

Give your answer in the form $y = ax + b$, where a and b are constants to be determined.

(5)

(c) Find a cartesian equation of the curve in the form $y^2 = f(x)$. (4)

7.



Leave
blank

Figure 3

The curve C has parametric equations

$$x = \ln(t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x -axis, bounded by the lines with equations $x = \ln 2$ and $x = \ln 4$, is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_0^2 \frac{1}{(t+1)(t+2)} dt. \quad (4)$$

(b) Hence find an exact value for this area.

(c) Find a cartesian equation of the curve C , in the form $y = f(x)$.

(d) State the domain of values for x for this curve.

8.

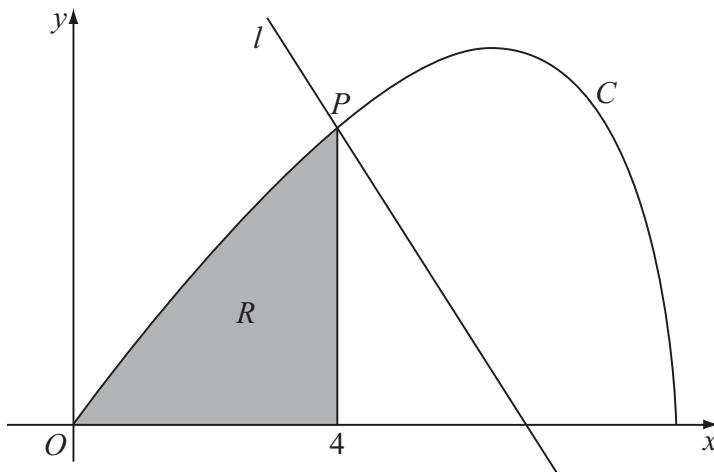


Figure 3

Figure 3 shows the curve C with parametric equations

$$x = 8 \cos t, \quad y = 4 \sin 2t, \quad 0 \leq t \leq \frac{\pi}{2}.$$

The point P lies on C and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of t at the point P .

(2)

The line l is a normal to C at P .

(b) Show that an equation for l is $y = -x\sqrt{3} + 6\sqrt{3}$.

(6)

The finite region R is enclosed by the curve C , the x -axis and the line $x = 4$, as shown shaded in Figure 3.

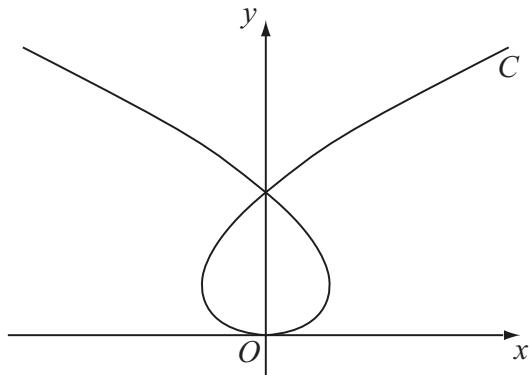
(c) Show that the area of R is given by the integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \sin^2 t \cos t \, dt$.

(4)

(d) Use this integral to find the area of R , giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)

7.



Leave
blank

Figure 3

The curve C shown in Figure 3 has parametric equations

$$x = t^3 - 8t, \quad y = t^2$$

where t is a parameter. Given that the point A has parameter $t = -1$,

(a) find the coordinates of A .

(1)

The line l is the tangent to C at A .

(b) Show that an equation for l is $2x - 5y - 9 = 0$.

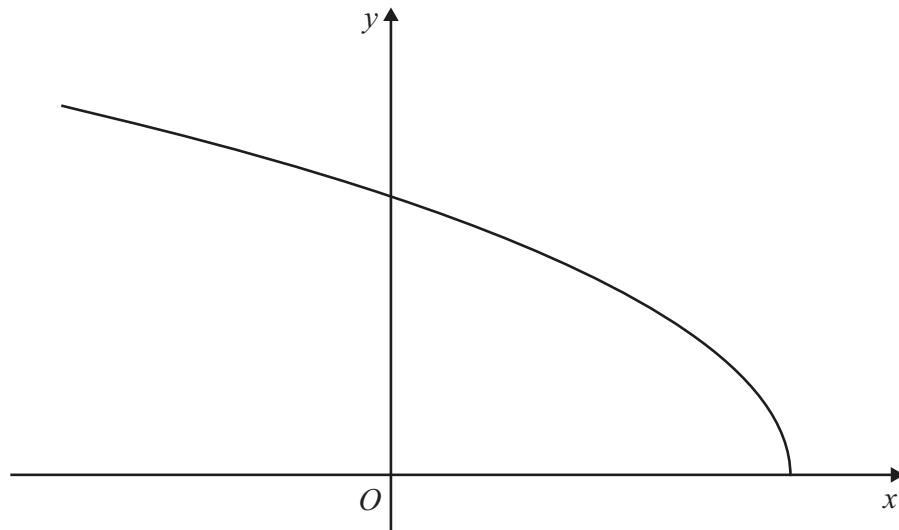
(5)

The line l also intersects the curve at the point B .

(c) Find the coordinates of B .

(6)

5.



Leave
blank

Figure 2

Figure 2 shows a sketch of the curve with parametric equations

$$x = 2 \cos 2t, \quad y = 6 \sin t, \quad 0 \leq t \leq \frac{\pi}{2}$$

(a) Find the gradient of the curve at the point where $t = \frac{\pi}{3}$. (4)

(b) Find a cartesian equation of the curve in the form

(b) Find a cartesian equation of the curve in the form

$$y = f(x), \quad -k \leq x \leq k,$$

stating the value of the constant k .

(4)

(c) Write down the range of $f(x)$. (2)

7.



Leave
blank

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 5t^2 - 4, \quad y = t(9 - t^2)$$

The curve C cuts the x -axis at the points A and B .

(a) Find the x -coordinate at the point A and the x -coordinate at the point B .

The region R , as shown shaded in Figure 2, is enclosed by the loop of the curve.

(b) Use integration to find the area of R . (6)

Leave
blank

4. A curve C has parametric equations

$$x = \sin^2 t, \quad y = 2 \tan t, \quad 0 \leq t < \frac{\pi}{2}$$

(a) Find $\frac{dy}{dx}$ in terms of t .

(4)

The tangent to C at the point where $t = \frac{\pi}{3}$ cuts the x -axis at the point P .

(b) Find the x -coordinate of P .

(6)

Leave
blank

6. The curve C has parametric equations

$$x = \ln t, \quad y = t^2 - 2, \quad t > 0$$

Find

(a) an equation of the normal to C at the point where $t = 3$,

(6)

(b) a cartesian equation of C .

(3)

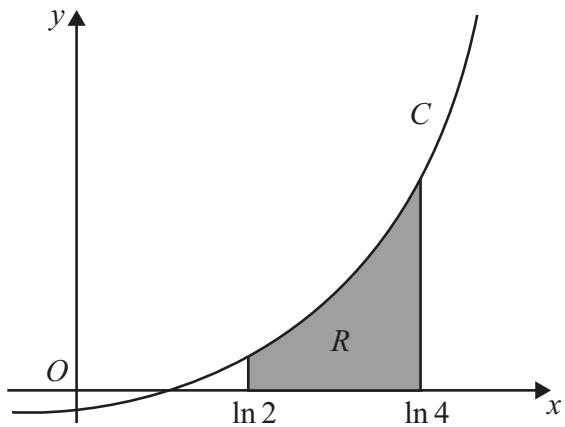


Figure 1

The finite area R , shown in Figure 1, is bounded by C , the x -axis, the line $x = \ln 2$ and the line $x = \ln 4$. The area R is rotated through 360° about the x -axis.

(c) Use calculus to find the exact volume of the solid generated.

(6)

Leave
blank

7.

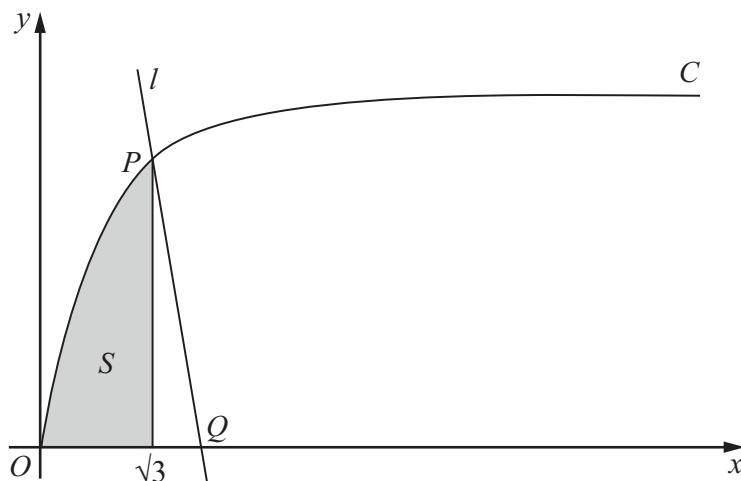


Figure 3

Figure 3 shows part of the curve C with parametric equations

$$x = \tan \theta, \quad y = \sin \theta, \quad 0 \leq \theta < \frac{\pi}{2}$$

The point P lies on C and has coordinates $\left(\sqrt{3}, \frac{1}{2}\sqrt{3}\right)$.

(a) Find the value of θ at the point P .

(2)

The line l is a normal to C at P . The normal cuts the x -axis at the point Q .

(b) Show that Q has coordinates $(k\sqrt{3}, 0)$, giving the value of the constant k .

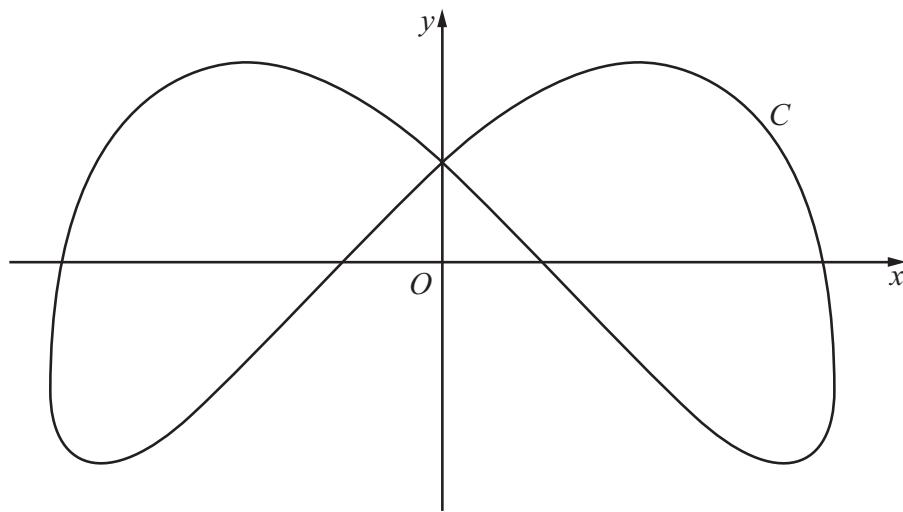
(6)

The finite shaded region S shown in Figure 3 is bounded by the curve C , the line $x = \sqrt{3}$ and the x -axis. This shaded region is rotated through 2π radians about the x -axis to form a solid of revolution.

(c) Find the volume of the solid of revolution, giving your answer in the form $p\pi\sqrt{3} + q\pi^2$, where p and q are constants.

(7)

5.



Leave
blank

Figure 2

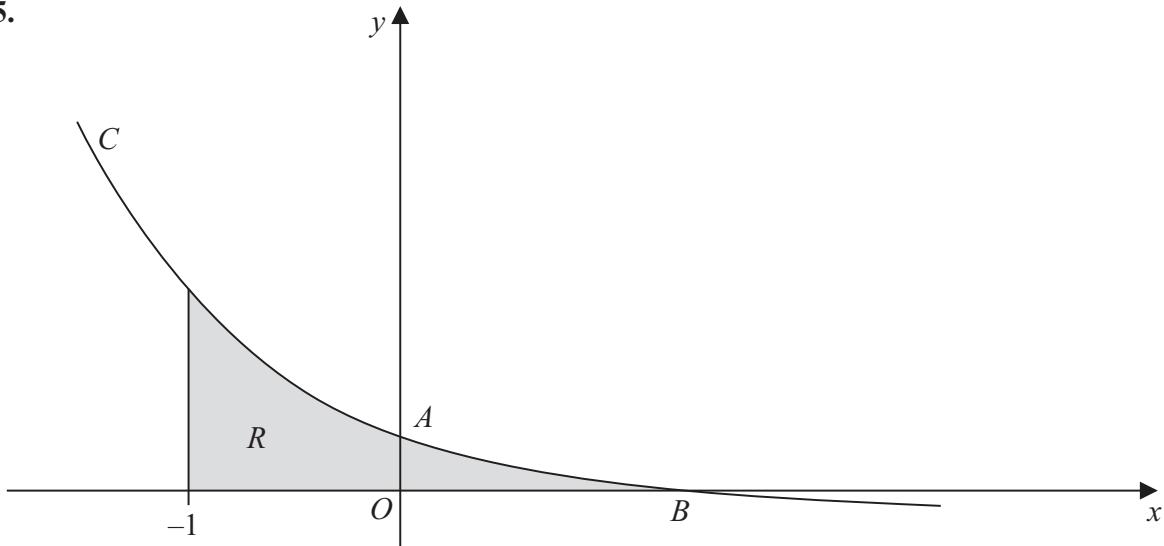
Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4 \sin\left(t + \frac{\pi}{6}\right), \quad y = 3 \cos 2t, \quad 0 \leq t < 2\pi$$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t . (3)

(b) Find the coordinates of all the points on C where $\frac{dy}{dx} = 0$ (5)

5.



Leave
blank

Figure 2

Figure 2 shows a sketch of part of the curve C with parametric equations

$$x = 1 - \frac{1}{2}t, \quad y = 2^t - 1$$

The curve crosses the y -axis at the point A and crosses the x -axis at the point B .

(a) Show that A has coordinates $(0, 3)$. (2)

(b) Find the x coordinate of the point B . (2)

(c) Find an equation of the normal to C at the point A . (5)

The region R , as shown shaded in Figure 2, is bounded by the curve C , the line $x = -1$ and the x -axis.

(d) Use integration to find the exact area of R . (6)

Leave
blank

4. A curve C has parametric equations

$$x = 2\sin t, \quad y = 1 - \cos 2t, \quad -\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$$

(a) Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$ (4)

(b) Find a cartesian equation for C in the form

$$y = f(x), \quad -k \leq x \leq k,$$

stating the value of the constant k .

(3)

(c) Write down the range of $f(x)$. (2)

Leave
blank

7.

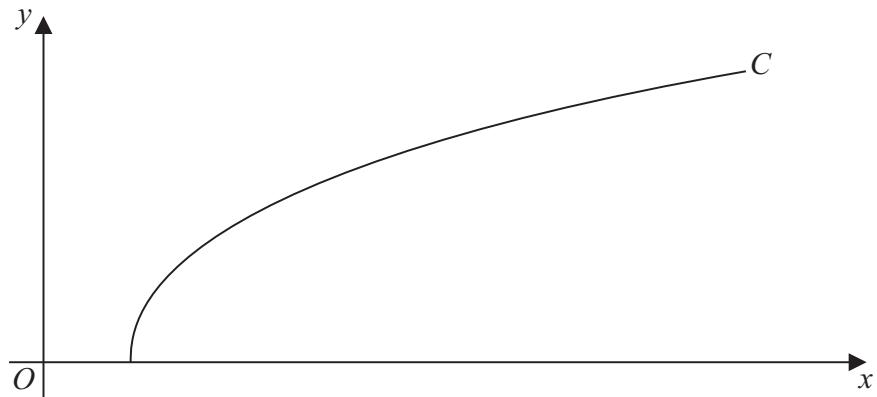


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 27 \sec^3 t, \quad y = 3 \tan t, \quad 0 \leq t \leq \frac{\pi}{3}$$

(a) Find the gradient of the curve C at the point where $t = \frac{\pi}{6}$ (4)

(b) Show that the cartesian equation of C may be written in the form

$$y = (x^{\frac{2}{3}} - 9)^{\frac{1}{2}}, \quad a \leq x \leq b$$

stating the values of a and b . (3)

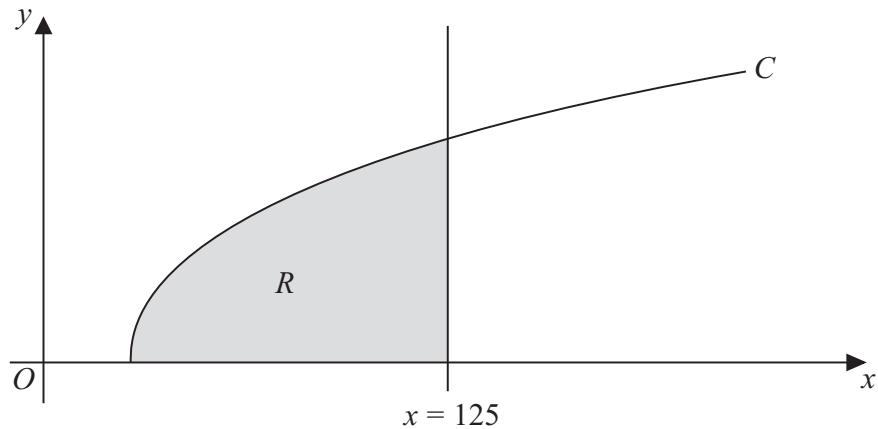


Figure 3

The finite region R which is bounded by the curve C , the x -axis and the line $x = 125$ is shown shaded in Figure 3. This region is rotated through 2π radians about the x -axis to form a solid of revolution.

(c) Use calculus to find the exact value of the volume of the solid of revolution. (5)