

Edexcel (U.K.) Pre 2017

Questions By Topic

C4 Chap01 Partial Fractions

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

3. (a) Express $\frac{5x+3}{(2x-3)(x+2)}$ in partial fractions. (3)

(b) Hence find the exact value of $\int_2^6 \frac{5x+3}{(2x-3)(x+2)} dx$, giving your answer as a single logarithm. (5)

Leave
blank

5.

$$f(x) = \frac{3x^2 + 16}{(1-3x)(2+x)^2} = \frac{A}{(1-3x)} + \frac{B}{(2+x)} + \frac{C}{(2+x)^2}, \quad |x| < \frac{1}{3}.$$

(a) Find the values of A and C and show that $B = 0$. (4)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^3 . Simplify each term. (7)

Leave
blank

2. $f(x) = \frac{3x-1}{(1-2x)^2}, \quad |x| < \frac{1}{2}.$

Given that, for $x \neq \frac{1}{2}$, $\frac{3x-1}{(1-2x)^2} = \frac{A}{(1-2x)} + \frac{B}{(1-2x)^2}$, where A and B are constants,

(a) find the values of A and B .

(3)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^3 , simplifying each term.

(6)

Leave
blank

4. (a) Express $\frac{2x-1}{(x-1)(2x-3)}$ in partial fractions.

(3)

(b) Given that $x \geq 2$, find the general solution of the differential equation

$$(2x-3)(x-1) \frac{dy}{dx} = (2x-1)y.$$

(5)

(c) Hence find the particular solution of this differential equation that satisfies $y = 10$ at $x = 2$, giving your answer in the form $y = f(x)$.

(4)

4.

$$\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}.$$

(a) Find the values of the constants A , B and C .

(4)

(b) Hence show that the exact value of $\int_1^2 \frac{2(4x^2+1)}{(2x+1)(2x-1)} dx$ is $2 + \ln k$, giving the value of the constant k .

(6)

Leave
blank

Leave
blank

7. (a) Express $\frac{2}{4-y^2}$ in partial fractions.

(3)

(b) Hence obtain the solution of

$$2 \cot x \frac{dy}{dx} = (4 - y^2)$$

for which $y = 0$ at $x = \frac{\pi}{3}$, giving your answer in the form $\sec^2 x = g(y)$.

(8)

3.

$$f(x) = \frac{27x^2 + 32x + 16}{(3x + 2)^2(1 - x)}, \quad |x| < \frac{2}{3}$$

Leave
blank

Given that $f(x)$ can be expressed in the form

$$f(x) = \frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)},$$

(a) find the values of B and C and show that $A = 0$. (4)

(b) Hence, or otherwise, find the series expansion of $f(x)$, in ascending powers of x , up to and including the term in x^2 . Simplify each term. (6)

(c) Find the percentage error made in using the series expansion in part (b) to estimate the value of $f(0.2)$. Give your answer to 2 significant figures. (4)

Leave
blank

$$3. \quad f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$$

(a) Find the values of the constants A , B and C .

(4)

(b) (i) Hence find $\int f(x) dx$.

(3)

(ii) Find $\int_0^2 f(x) dx$ in the form $\ln k$, where k is a constant.

(3)

Leave
blank

$$5. \quad \frac{2x^2+5x-10}{(x-1)(x+2)} \equiv A + \frac{B}{x-1} + \frac{C}{x+2}$$

(a) Find the values of the constants A , B and C .

(4)

(b) Hence, or otherwise, expand $\frac{2x^2 + 5x - 10}{(x-1)(x+2)}$ in ascending powers of x , as far as the term in x^2 . Give each coefficient as a simplified fraction.

(7)

Leave
blank

3. (a) Express $\frac{5}{(x-1)(3x+2)}$ in partial fractions.

(3)

(b) Hence find $\int \frac{5}{(x-1)(3x+2)} dx$, where $x > 1$.

(3)

(c) Find the particular solution of the differential equation

$$(x-1)(3x+2) \frac{dy}{dx} = 5y, \quad x > 1,$$

for which $y=8$ at $x=2$. Give your answer in the form $y=f(x)$.

(6)

1.

$$\frac{9x^2}{(x-1)^2(2x+1)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(2x+1)}$$

Find the values of the constants A , B and C .

(4)

Leave
blank

Leave
blank

8. (a) Express $\frac{1}{P(5-P)}$ in partial fractions. (3)

A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation

$$\frac{dP}{dt} = \frac{1}{15}P(5 - P), \quad t \geq 0$$

where P , in thousands, is the population of meerkats and t is the time measured in years since the study began.

Given that when $t = 0$, $P = 1$,

(b) solve the differential equation, giving your answer in the form,

$$P = \frac{a}{b + c e^{-\frac{1}{3}t}}$$

where a, b and c are integers.

(c) Hence show that the population cannot exceed 5000

(8)

(1)

Leave
blank

$$1. \quad f(x) = \frac{1}{x(3x-1)^2} = \frac{A}{x} + \frac{B}{(3x-1)} + \frac{C}{(3x-1)^2}$$

(a) Find the values of the constants A , B and C .

(4)

(b) (i) Hence find $\int f(x) dx$.

(ii) Find $\int_1^2 f(x) \, dx$, leaving your answer in the form $a + \ln b$,
 where a and b are constants.

(6)

3. Express $\frac{9x^2 + 20x - 10}{(x + 2)(3x - 1)}$ in partial fractions.

(4)

Leave
blank

1. Express in partial fractions

Leave
blank

$$\frac{5x + 3}{(2x + 1)(x + 1)^2}$$

(4)