

Edexcel (U.K.) Pre 2017

Questions By Topic

C3 Chap08 Differentiation

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

4. $f(x) = 3e^x - \frac{1}{2}\ln x - 2, \quad x > 0.$

(a) Differentiate to find $f'(x)$.

(3)

The curve with equation $y = f(x)$ has a turning point at P . The x -coordinate of P is α .

(b) Show that $\alpha = \frac{1}{6}e^{-\alpha}$.

(2)

The iterative formula

$$x_{n+1} = \frac{1}{6} e^{-x_n}, \quad x_0 = 1,$$

is used to find an approximate value for α .

(c) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.

(2)

(d) By considering the change of sign of $f'(x)$ in a suitable interval, prove that $\alpha = 0.1443$ correct to 4 decimal places.

(2)

Leave
blank

3. The point P lies on the curve with equation $y = \ln\left(\frac{1}{3}x\right)$. The x -coordinate of P is 3.

Find an equation of the normal to the curve at the point P in the form $y = ax + b$, where a and b are constants.

(5)

Leave
blank

4. (a) Differentiate with respect to x

$$(i) \quad x^2 e^{3x+2},$$

(4)

$$(ii) \frac{\cos(2x^3)}{3x}.$$

(4)

(b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x .

(5)

Leave
blank

2. Differentiate, with respect to x ,

(a) $e^{3x} + \ln 2x$,

(3)

(b) $(5 + x^2)^{\frac{3}{2}}$.

(3)

Q2

(Total 6 marks)

Leave
blank

3. The curve C has equation

$$x = 2 \sin y.$$

(a) Show that the point $P\left(\sqrt{2}, \frac{\pi}{4}\right)$ lies on C . (1)

(b) Show that $\frac{dy}{dx} = \frac{1}{\sqrt{2}}$ at P . (4)

(c) Find an equation of the normal to C at P . Give your answer in the form $y = mx + c$, where m and c are exact constants. (4)

Leave
blank

4. (i) The curve C has equation

$$y = \frac{x}{9+x^2}.$$

Use calculus to find the coordinates of the turning points of C .

(6)

(ii) Given that

$$y = (1 + e^{2x})^{\frac{3}{2}},$$

find the value of $\frac{dy}{dx}$ at $x = \frac{1}{2} \ln 3$.

(5)

Leave
blank

3. A curve C has equation

$$y = x^2 e^x.$$

(a) Find $\frac{dy}{dx}$, using the product rule for differentiation.

(3)

(b) Hence find the coordinates of the turning points of C .

(3)

(c) Find $\frac{d^2y}{dx^2}$.

(2)

(d) Determine the nature of each turning point of the curve C .

(2)

Leave
blank

2. A curve C has equation

$$y = e^{2x} \tan x, \quad x \neq (2n+1)\frac{\pi}{2}.$$

(a) Show that the turning points on C occur where $\tan x = -1$.

(b) Find an equation of the tangent to C at the point where $x = 0$.

Leave
blank

7. A curve C has equation

$$y = 3 \sin 2x + 4 \cos 2x, \quad -\pi \leq x \leq \pi.$$

The point $A(0, 4)$ lies on C .

(a) Find an equation of the normal to the curve C at A .

(5)

(b) Express y in the form $R \sin(2x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.

Give the value of α to 3 significant figures.

(4)

(c) Find the coordinates of the points of intersection of the curve C with the x -axis. Give your answers to 2 decimal places.

(4)

1. The point P lies on the curve with equation

$$y = 4e^{2x+1}.$$

The y -coordinate of P is 8.

(a) Find, in terms of $\ln 2$, the x -coordinate of P .

(2)

(b) Find the equation of the tangent to the curve at the point P in the form $y = ax + b$, where a and b are exact constants to be found.

(4)

Leave
blank

Leave
blank

6. (a) Differentiate with respect to x ,

(i) $e^{3x}(\sin x + 2 \cos x)$,

(3)

(ii) $x^3 \ln(5x + 2)$.

(3)

Given that $y = \frac{3x^2 + 6x - 7}{(x+1)^2}$, $x \neq -1$,

(b) show that $\frac{dy}{dx} = \frac{20}{(x+1)^3}$.

(5)

(c) Hence find $\frac{d^2y}{dx^2}$ and the real values of x for which $\frac{d^2y}{dx^2} = -\frac{15}{4}$.

(3)

1. (a) Find the value of $\frac{dy}{dx}$ at the point where $x = 2$ on the curve with equation

$$y = x^2 \sqrt{5x - 1}.$$

(6)

(b) Differentiate $\frac{\sin 2x}{x^2}$ with respect to x .

(4)

Leave
blank

4. Find the equation of the tangent to the curve $x = \cos(2y + \pi)$ at $\left(0, \frac{\pi}{4}\right)$.

Give your answer in the form $y = ax + b$, where a and b are constants to be found.

(6)

Leave
blank

Leave
blank

5. Sketch the graph of $y = \ln|x|$, stating the coordinates of any points of intersection with the axes.

(3)

2. A curve C has equation

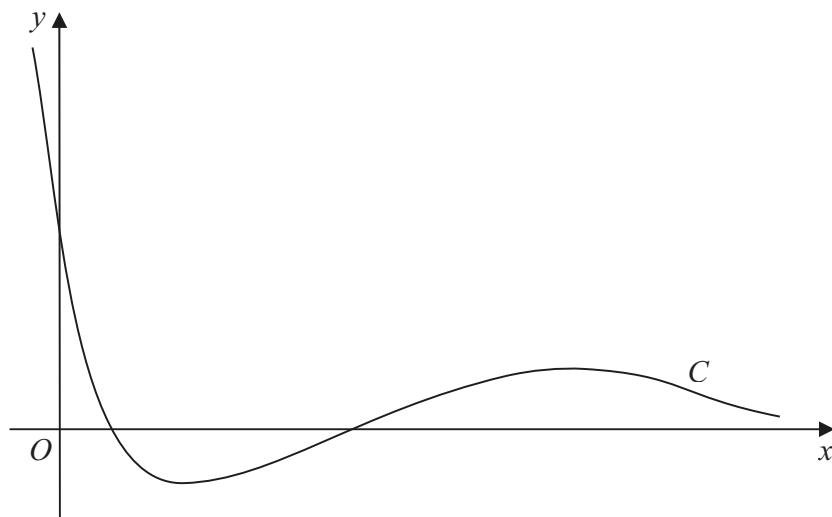
$$y = \frac{3}{(5-3x)^2}, \quad x \neq \frac{5}{3}$$

The point P on C has x -coordinate 2. Find an equation of the normal to C at P in the form $ax + by + c = 0$, where a , b and c are integers.

(7)

Leave
blank

5.



Leave
blank

Figure 1

Figure 1 shows a sketch of the curve C with the equation $y = (2x^2 - 5x + 2)e^{-x}$.

(a) Find the coordinates of the point where C crosses the y -axis. (1)

(b) Show that C crosses the x -axis at $x = 2$ and find the x -coordinate of the other point where C crosses the x -axis. (3)

(c) Find $\frac{dy}{dx}$. (3)

(d) Hence find the exact coordinates of the turning points of C . (5)

Leave
blank

7. The curve C has equation

$$y = \frac{3 + \sin 2x}{2 + \cos 2x}$$

(a) Show that

$$\frac{dy}{dx} = \frac{6 \sin 2x + 4 \cos 2x + 2}{(2 + \cos 2x)^2} \quad (4)$$

(b) Find an equation of the tangent to C at the point on C where $x = \frac{\pi}{2}$.

Write your answer in the form $y = ax + b$, where a and b are exact constants.

(4)

8. (a) Given that

$$\frac{d}{dx}(\cos x) = -\sin x$$

show that $\frac{d}{dx}(\sec x) = \sec x \tan x$.

(3)

Given that

$$x = \sec 2y$$

(b) find $\frac{dx}{dy}$ in terms of y .

(2)

(c) Hence find $\frac{dy}{dx}$ in terms of x .

(4)

Leave
blank

1. Differentiate with respect to x

$$(a) \ln(x^2 + 3x + 5)$$

(2)

$$(b) \frac{\cos x}{x^2}$$

(3)

Leave
blank

$$7. \quad f(x) = \frac{4x-5}{(2x+1)(x-3)} - \frac{2x}{x^2-9}, \quad x \neq \pm 3, x \neq -\frac{1}{2}$$

Leave
blank

(a) Show that

$$f(x) = \frac{5}{(2x+1)(x+3)} \quad (5)$$

The curve C has equation $y=f(x)$. The point $P\left(-1, -\frac{5}{2}\right)$ lies on C .

(b) Find an equation of the normal to C at P .

(8)

Leave
blank

8. (a) Express $2\cos 3x - 3\sin 3x$ in the form $R\cos(3x + \alpha)$, where R and α are constants, $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Give your answers to 3 significant figures. (4)

$$f(x) = e^{2x} \cos 3x$$

(b) Show that $f'(x)$ can be written in the form

$$f'(x) = R e^{2x} \cos(3x + \alpha)$$

where R and α are the constants found in part (a).

(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation $y = f(x)$ has a turning point.

(3)

1. Differentiate with respect to x , giving your answer in its simplest form,

$$(a) \quad x^2 \ln(3x) \quad (4)$$

$$(b) \frac{\sin 4x}{x^3} \quad (5)$$

Leave
blank

Leave
blank

4. The point P is the point on the curve $x = 2 \tan\left(y + \frac{\pi}{12}\right)$ with y -coordinate $\frac{\pi}{4}$.

Find an equation of the normal to the curve at P .

(7)

3.

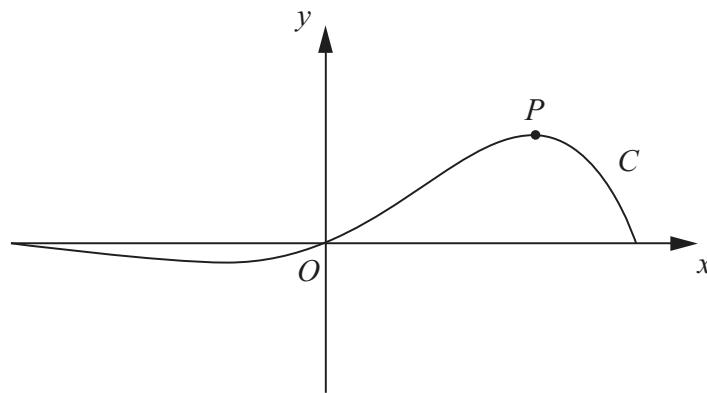


Figure 1

Figure 1 shows a sketch of the curve C which has equation

$$y = e^{x\sqrt{3}} \sin 3x, \quad -\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$$

(a) Find the x coordinate of the turning point P on C , for which $x > 0$.
Give your answer as a multiple of π .

(6)

(b) Find an equation of the normal to C at the point where $x = 0$

(3)

Leave
blank

Leave
blank

7. (a) Differentiate with respect to x ,

$$(i) \quad x^{\frac{1}{2}} \ln(3x)$$

(ii) $\frac{1-10x}{(2x-1)^5}$, giving your answer in its simplest form.

(b) Given that $x = 3 \tan 2y$ find $\frac{dy}{dx}$ in terms of x .

(6)

(5)

1. The curve C has equation

$$y = (2x - 3)^5$$

The point P lies on C and has coordinates $(w, -32)$.

Find

(a) the value of w ,

(2)

(b) the equation of the tangent to C at the point P in the form $y = mx + c$, where m and c are constants.

(5)

Leave
blank

5. (i) Differentiate with respect to x

$$(a) \quad y = x^3 \ln 2x$$

$$(b) \quad y = (x + \sin 2x)^3$$

(6)

Given that $x = \cot y$,

(ii) show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$

(5)

Leave
blank

Leave
blank

5. Given that

$$x = \sec^2 3y, \quad 0 < y < \frac{\pi}{6}$$

(a) find $\frac{dx}{dy}$ in terms of y .

(2)

(b) Hence show that

$$\frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}} \quad (4)$$

(c) Find an expression for $\frac{d^2y}{dx^2}$ in terms of x . Give your answer in its simplest form.

(4)