

Edexcel (U.K.) Pre 2017

Questions By Topic

C3 Chap04 Numerical Methods

Compiled By: Dr Yu

Editors: Betül, Signal, Vivian

www.CasperYC.club

Last updated: February 7, 2026

DrYuFromShanghai@QQ.com

Leave
blank

2. (a) Differentiate with respect to x

$$(i) \quad 3 \sin^2 x + \sec 2x,$$

(3)

$$(ii) \quad \{x + \ln(2x)\}^3.$$

(3)

Given that $y = \frac{5x^2 - 10x + 9}{(x-1)^2}$, $x \neq 1$,

(b) show that $\frac{dy}{dx} = -\frac{8}{(x-1)^3}$.

(6)

Leave
blank

5. $f(x) = 2x^3 - x - 4$.

(a) Show that the equation $f(x) = 0$ can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}. \quad (3)$$

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2} \right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 .

(3)

The only real root of $f(x) = 0$ is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places.

(3)

5.

Figure 2

Leave
blank

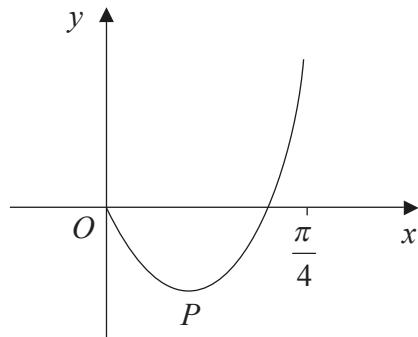


Figure 2 shows part of the curve with equation

$$y = (2x-1) \tan 2x, \quad 0 \leq x < \frac{\pi}{4}.$$

The curve has a minimum at the point P . The x -coordinate of P is k .

(a) Show that k satisfies the equation

$$4k + \sin 4k - 2 = 0. \quad (6)$$

The iterative formula

$$x_{n+1} = \frac{1}{4}(2 - \sin 4x_n), \quad x_0 = 0.3,$$

is used to find an approximate value for k .

(b) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.

(3)

(c) Show that $k = 0.277$, correct to 3 significant figures.

(2)

Leave
blank

7. $f(x) = x^4 - 4x - 8$.

(a) Show that there is a root of $f(x) = 0$ in the interval $[-2, -1]$. (3)

(b) Find the coordinates of the turning point on the graph of $y = f(x)$. (3)

(c) Given that $f(x) = (x - 2)(x^3 + ax^2 + bx + c)$, find the values of the constants, a , b and c . (3)

(d) In the space provided on page 21, sketch the graph of $y = f(x)$. (3)

(e) Hence sketch the graph of $y = |f(x)|$. (1)

Leave
blank

4.

$$f(x) = -x^3 + 3x^2 - 1.$$

(a) Show that the equation $f(x) = 0$ can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}. \quad (2)$$

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3-x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places. (2)

(c) Show that $x = 0.653$ is a root of $f(x) = 0$ correct to 3 decimal places. (3)

Leave
blank

$$3. \quad f(x) = \ln(x+2) - x + 1, \quad x > -2, x \in \mathbb{R}.$$

(a) Show that there is a root of $f(x) = 0$ in the interval $2 < x < 3$.

(2)

(b) Use the iterative formula

$$x_{n+1} = \ln(x_n + 2) + 1, \quad x_0 = 2.5$$

to calculate the values of x_1 , x_2 and x_3 giving your answers to 5 decimal places.

(3)

(c) Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places.

(2)

7.

$$f(x) = 3x^3 - 2x - 6$$

(a) Show that $f(x) = 0$ has a root, α , between $x = 1.4$ and $x = 1.45$

(2)

(b) Show that the equation $f(x) = 0$ can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

(3)

(c) Starting with $x_0=1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 , and x_3 , giving your answers to 4 decimal places.

(3)

(d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places.

(3)

Leave
blank

$$7. \quad f(x) = 3xe^x - 1$$

The curve with equation $y = f(x)$ has a turning point P .

(a) Find the exact coordinates of P .

(5)

The equation $f(x) = 0$ has a root between $x = 0.25$ and $x = 0.3$

(b) Use the iterative formula

$$x_{n+1} = \frac{1}{3} e^{-x_n}$$

with $x_0 = 0.25$ to find, to 4 decimal places, the values of x_1 , x_2 and x_3 .

(3)

(c) By choosing a suitable interval, show that a root of $f(x) = 0$ is $x = 0.2576$ correct to 4 decimal places.

(3)

1.

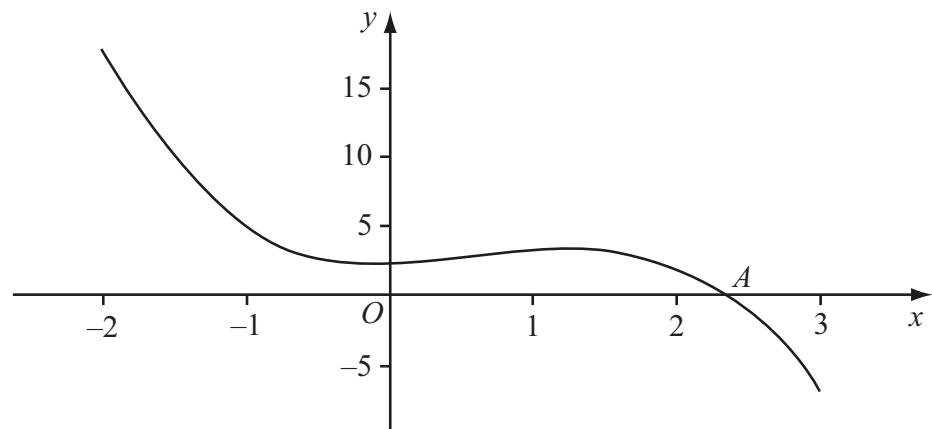
Leave
blank**Figure 1**

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x -axis at the point A where $x = \alpha$.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 .
Give your answers to 3 decimal places where appropriate.

(3)

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

(3)

Leave
blank

2.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that $f(x) = 0$ can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2. \quad (2)$$

The equation $f(x) = 0$ has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n+11}{x_n+2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 . (3)

(c) Show that $\alpha = 2.057$ correct to 3 decimal places. (3)

Leave
blank

4. (i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$.

(4)

(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.

(5)

Leave
blank

3. $f(x) = 4 \operatorname{cosec} x - 4x + 1$, where x is in radians.

(a) Show that there is a root α of $f(x)=0$ in the interval $[1.2, 1.3]$.

(2)

(b) Show that the equation $f(x) = 0$ can be written in the form

$$x = \frac{1}{\sin x} + \frac{1}{4} \quad (2)$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By considering the change of sign of $f(x)$ in a suitable interval, verify that $\alpha = 1.291$ correct to 3 decimal places.

(2)

Leave
blank

$$2. \quad f(x) = 2 \sin(x^2) + x - 2, \quad 0 \leq x < 2\pi$$

(a) Show that $f(x)=0$ has a root α between $x=0.75$ and $x=0.85$

(2)

The equation $f(x)=0$ can be written as $x = \left[\arcsin(1 - 0.5x) \right]^{\frac{1}{2}}$.

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin(1 - 0.5x_n) \right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(3)

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

(3)

2.

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation $f(x) = 0$ can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq -3 \quad (3)$$

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{3+x_n} \right)}, \quad n \geq 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

The root of $f(x) = 0$ is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

Leave
blank

(3)

2.

$$g(x) = e^{x-1} + x - 6$$

Leave
blank

(a) Show that the equation $g(x) = 0$ can be written as

$$x = \ln(6 - x) + 1, \quad x < 6$$

The root of $g(x) = 0$ is α .

The iterative formula

$$x_{n+1} = \ln(6 - x_n) + 1, \quad x_0 = 2$$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 , and x_3 to 4 decimal places.

(3)

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places.

(3)

$$4. \quad f(x) = 25x^2 e^{2x} - 16, \quad x \in \mathbb{R}$$

Leave
blank

(a) Using calculus, find the exact coordinates of the turning points on the curve with equation $y = f(x)$.

(5)

(b) Show that the equation $f(x) = 0$ can be written as $x = \pm \frac{4}{5} e^{-x}$

(1)

The equation $f(x) = 0$ has a root α , where $\alpha = 0.5$ to 1 decimal place.

(c) Starting with $x_0 = 0.5$, use the iteration formula

$$x_{n+1} = \frac{4}{5} e^{-x_n}$$

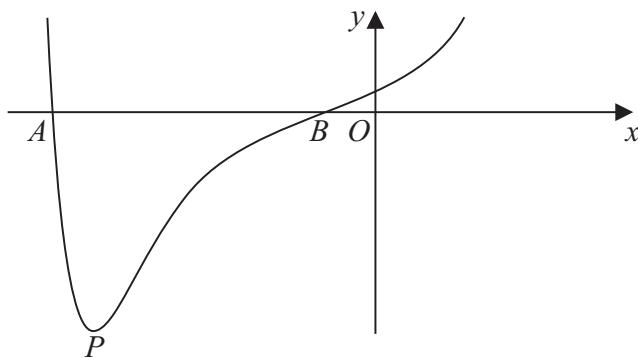
to calculate the values of x_1 , x_2 , and x_3 , giving your answers to 3 decimal places.

(3)

(d) Give an accurate estimate for α to 2 decimal places, and justify your answer.

(2)

7.



Leave blank

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = f(x)$ where

$$f(x) = (x^2 + 3x + 1)e^{x^2}$$

The curve cuts the x -axis at points A and B as shown in Figure 2.

(a) Calculate the x coordinate of A and the x coordinate of B , giving your answers to 3 decimal places. (2)

(b) Find $f'(x)$. (3)

The curve has a minimum turning point at the point P as shown in Figure 2.

(c) Show that the x coordinate of P is the solution of

$$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)} \quad (3)$$

(d) Use the iteration formula

$$x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}, \quad \text{with } x_0 = -2.4,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places. (3)

The x coordinate of P is α .

(e) By choosing a suitable interval, prove that $\alpha = -2.43$ to 2 decimal places. (2)