Question Number	Scheme	Marks			
1(a)	Select a random number as the starting point				
	Take every 50th employee	B1			
		(2)			
(h)	e.g. The alphabetical list may not be random or				
(0)	May be biased as list not truly random or	B1			
	Some combinations of names are not possible				
		(1)			
(c)	0	B1			
		(1)			
	Notes	Total 4			
(a)	B1 for realising they need to select a random number as the starting point				
	B1 for realising they need to take every 50 th employee				
	B1 for a suitable disadvantage. Sight of the words in bold oe for those reasons are sufficient				
	provided there is no contradiction or not a correct reason				
(h)	Condone "may not be representative". "some employees with the same surname we	on't be			
(0)	chosen"				
	Do not allow any reference to requiring a sampling frame as it already has one e.g. "a				
	sampling frame is needed because there is an alphabetical list"				
(c)	B1 0				

Question Number	Scheme								Marks		
		Kettle	A	В	С	D	E	F	G		
		Price (£)	99.99	14.99	34.97	49.99	19.97	29.99	8.99		
2 (a)		Aarush Rank	2	5	4	1	7	3	6		MI
		Actual rank	1	6	3	2	5	4	7		
		J^2 1 + 1 + 1 + 1 + 1	1 . 1 . 1 [101						-) (1
	$\frac{\sum d^2 = 1 + 1 + 1 + 1 + 4 + 1 + 1}{6 \times 10^{10}}$										IM I
	$r_s = 1 - \frac{6 \times 10}{7 \times 48}$									dM1	
	:	= 0.8214							awrt 0.8	821	A1cso (4)
(b)	H ₀	$: \rho = 0 H_1 : \rho > 0$	0								B1
	Cri	tical Value $r_s = 0$.	7143								M1
	Eit	her reject H ₀ / resu	lt is sign	ificant/	rs does li	e in the	critical r	region			M1
	Conclude there is evidence to support that Aarush can rank the kettles in order of price .									A1	
		-									(4)
(c)	Aarush has already ranked them or the order / price is not normally distributed								B1		
											(1)
(d)	Kettle A and D would have a tied rank (1.5)								B1		
										(1)	
	Notes									Total 10	
(a)	M1	for an attempt to	rank Aa	rush's oi	rder and	actual of	rder (at	least 4 c	orrect in	eith	er row)
	M1	for finding differ	ences be	etween e	ach pair	of their	ranks an	d evalua	ting \sum	d^2 in	mp by A1
	dM1 dependent on previous 2 M marks being awarded. Using $r_s = 1 - \frac{6 \times \sum d^2}{7 \times 48}$										
	A1	awrt 0.821 or allo	$\frac{23}{28}$								
4.5	B1	both hypotheses	stated in	terms o	$f \rho \text{ or } \rho_s$	(condor	ne if app	ears as p	– it can	not ł	be in
(b)	tern	ms of r) If their r_s	< 0 cond	done H ₁	: $ ho < 0$		_				
	M1	allow their CV	= 0.714	3 or bet	ter						
	M1	tor a correct nor	e Allor		tatement	consiste	ent with	their r_s ($r_s < 1$) a	nd th	heir CV
	A1	dependent on all	of the pr	vevious n	nethod n	arks bu	t indene	ndent of	hypothe	ses.	For
	correct conclusion in context which must be rejecting H_0 and has rank, kettles and price									price	
	and no contradictory statements. B1 for a correct reason e.g. (some of) the data has already been ranked. Aarush has not								not		
(c)	given the prices (only the ranks) oe. Condone "it is ordinal data"										
(d)	B1 for the idea that both A and D will have same rank (1.5) If the rank is stated it m 1.5. Must mention both A and D (or imply) and allow explanations such as "equal ra "average rank". Condone "order" for rank. If an incorrect rank or letter pairing is given then B0.								nust be cank",		

Question Number	Scheme	Marks				
3(a)	$H_0: \mu = 328$ $H_1: \mu \neq 328$ oe	B1				
	Significance level is 5%	dB1				
	(328 is within the interval therefore) no evidence to support that μ is not 328					
		(3)				
(b)	$1.96 \times \frac{\sigma}{\sqrt{150}} = \frac{329.76 - 327.84}{2} (= 0.96) \text{ oe or e.g. } 328.8 + 1.96 \times \frac{\sigma}{\sqrt{150}} = 329.76$	M1 B1				
	or $328.8 - 1.96 \times \frac{\sigma}{\sqrt{150}} = 327.84 \ [\sigma = 5.9987]$					
	$328 - 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe or $328 + 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe	M1 B1				
	$328 \pm 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe	dM1				
	(327.0132, 328.986) (awrt 327, awrt 329)	A1				
	V D(5.0.00) V D(5.0.00)	(6)				
(c)	$X \sim B(5, 0.98)$ or $Y \sim B(5, 0.02)$	MI				
	$P(X4)$ or $P(Y,, 1) = {}^{5}C_{4}(0.98)^{4}(0.02) + (0.98)^{3}$ oe	AI				
	= 0.9961 awrt 0.996	A1				
		(3)				
	Notes	Total 12				
(a)	the sample mean. These three marks can still be scored. You do not need to ch calculations to score in (a)	eck the				
	B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x})					
	dB1 correct significance level given. Allow ($\alpha =$) 0.05 Do not allow if more than	one				
	given. This mark is dependent on a two tail test being indicated with their hypotheses condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own.					
	B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H ₀ " provided H ₀ : $\mu =$	=328 but				
	condone poor notation for their null hypothesis. Does not need to be in context.					
(b)	M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by	y awrt 6				
	B1 use of awrt 1.96 in the calculation may be seen in (a) or implied by their value	for σ				
	M1 correct method to find one end of the confidence interval using their σ Allow					
	2.3 < z < 3.1 condone use of 150 rather than 200 (may be implied by awrt 327 or a	awrt 329				
	if no incorrect working is seen)					
	B1 awrt 2.3263 seen	(1 1				
	using their σ and using $n = 200$ to find both ends of the confidence interval Δ co	rrect				
	confidence interval with no working – send to review	meet				
	A1 (awrt 327, awrt 329) Condone missing brackets					
	M1 use of Binomial e.g. B(5, 0.98) or B(5, 0.02) or 0.98^5 or ${}^5C_x \times 0.98^x \times 0.02^{5-x}$ (may					
	be implied by awrt 0.0922 or awrt 0.904 within a calculation or awrt 0.996)					
	A 1 for ${}^{5}C \times 0.08^{4} \times 0.02 \pm 0.08^{5}$ on or evert 0.0022 \pm evert 0.004 or implied by ever	0.996				
	AT IOF $C_4 \times 0.98 \times 0.02 + 0.98$ be eg awit $0.0922 + awit 0.904$ of implied by awit	. 0.))0				

Question Number	Scheme							
4(a)	H_0 : favourite flavours occur in the ratio $10:5:2:3$							
	H ₁ : favourite flavours do not occur in the ratio 10 : 5 : 2 : 3							
		Chocolate	Vanilla	Strawberry	Other			
	observed	188	95	40	77			
	expected	200	100	40	60			
	$\frac{(O_i - E_i)^2}{2}$	$(188 - "200")^2$	$(95 - "100")^2$	$(40 - "40")^2$	$(77 - "60")^2$	M1		
	E_i	"200"	"100"	"40"	"60"	M1		
		(=0.72)	(=0.25)	(0)	(= 4.816)			
	<u> </u>	1002	0.52	(=0)	772			
	$\frac{O_i^2}{}$	1882	<u>95²</u>	$\frac{40^{2}}{1000}$				
	E_i	"200"	"100"	"40"	(-08.816)			
		(=1/0./2)	(=90.23)	(-40)	(-98.810)			
	$-(O - E)^2$	-	$- \rho^2$					
	$\sum_{i} \frac{(O_i - D_i)}{E_i} =$	5.786 <u>or</u>	$\frac{O_I}{E_I} - 400 = 400$	405.7867 – 400	(awrt 5.79)	A1		
	v = 3					B1		
	CV is 7.815					B1ft		
	[5.79 < 7.815] so	o insufficient ev	idence to reject	$H_0 \underline{or} not sign$	ificant	M1		
	There is no evidence to suggest that people's favourite flavours of ice-cream do not occur in the given ratio . oe							
(b)(i)(ii)) $\frac{188 \times 130}{1200}$ or $\frac{112 \times 95}{11200}$							
	400 400 61.1 and 26.6							
(c)	6					B1		
	Notes							
	B1 Both hypothe	eses correct. Mu	st state the ratio	o or refer to the	"given ratio" oe. Do	bes not		
	need to state the	actual flavours.						
(a)	Accept statemen	ts e.g. H_0 : the	proportion of pe	eople who like o	lifferent ice creams	15		
	10:5:2:3 Accept	H_0 : the ratio 1	0:5:2:3 is correc	et. Do not accep	ot e.g. H_0 : the mana	iger's		
	belief is correct	(without referen	ce to the ratio)					
	M1 At least 2 ex	pected values c	orrect. Check if	each cell has b	een calculated separ	ately and		
	the totals add up	to 200, 100, 40	and 60 (seen)	values for + 1	at 2 floren I 1'	ad 10		
	awrt 5 79	nou seen or may	be implied by	values for at lea	ist 2 Havours. Implie	su by		
	A1 awrt 5.79							
	B1 correct degre	es of freedom s	tated or implied	by any awrt 0.	.072 0.115 0.216 ().352		
	0.584 6.251 7.815 9.348 11.345 12.838							
	B1ft awrt 7.815 follow through on 6 degrees only $= 12.592$							
	M1 Independent of hypotheses, ft their χ^2 value and their CV. A correct comment. Allow							

	"Accept H_0 " or e.g. "do not reject H_0 " Do not award if contradicting non contextual							
	comments given. If their χ^2 value < their CV e.g. "do not reject H ₀ " If their χ^2 value >							
	their CV e.g. "reject H_0 " (May be implied by a correct ft contextual comment)							
	A1ft dependent on all the previous method marks. A correct contextual comment for							
	their χ^2 value and their CV that mentions flavour and ratio oe (does not need to state the							
	actual ratio) Accept sufficient evidence to support the manager's belief oe condone "the							
	manager is correct"							
(b)	M1 A correct method to find one of the values. Implied by one correct value							
	A1 Both answers correct.							
(c)	B1 cao							

Question	Scheme	Marks			
Number		IVIAINS			
5(a)	$H_0: \mu_p - \mu_f = 1 \text{oe}$	B1			
	$H_1: \mu_p - \mu_f > 1$ oe	B1			
	s.e. = $\sqrt{\frac{9}{605} + \frac{4}{45}} = \left[\sqrt{0.10376}\right] = [0.322]$	M1			
	$z = \pm \frac{7.0 - 5.6 - 1}{\sqrt{\frac{9}{605} + \frac{4}{45}}}$	dM1			
	= 1.24175 awrt 1.24	A1			
	CV 5% one tailed = ± 1.6449 (see notes)	B1			
	Not significant, do not reject H ₀	dM1			
	Insufficient evidence that full-time staff are more than one minute faster than	Alft			
	part-time staff or manager's claim is not supported	(8)			
(b)	Assume both samples are normal or both large enough for CLT of	B1			
(0)	Assume $s^2 = \sigma^2$ for both samples	B1			
	Assume individual results are independent	21			
		(2)			
(c)	$\overline{a} = \frac{45 \times 7 + 8}{46} [= 7.0217]$	M1			
	$\sum a^2 = 44 \times 4 + 45 \times 7^2 + 8^2 [= 2445]$	M1			
	$s^2 = \frac{"2445" - 46 \times "7.0217"^2}{}$	M1			
	45	1411			
	= 3.93285 awrt 3.93	A1			
		(4)			
	Notes	Total 14			
(a)	B1 H ₀ correct oe e.g. H ₀ : $\mu_f - \mu_p = -1$ Must be in terms of μ Use of \overline{t} is B0. May use				
	other letters to p and j but must be defined				
	BI H ₁ correct of e.g. $H_1: \mu_f - \mu_p < -1$ SC B0B1 for $H_0: \mu_f - \mu_p = 1$ and $H_1: \mu_f$	$-\mu_p > 1$			
	Must be in terms of μ Use of t is B0 May use other letters to p and f but must be	defined			
	MI Correct method to find s.e. may be seen within formula to standardise (implied $+1.24$)	by awrt			
	dM1 dep on previous M being awarded. Correct method to find z value (implied by ± 1.24)	v awrt			
	A1 awrt ± 1.24				
	B1 awrt ± 1.6449 or <i>p</i> -value awrt $0.107 > 0.05$ oe				
	dM1 all previous method marks awarded for a correct conclusion ft their z value ar	d CV			
	A1ft dependent on all previous method marks but independent of hypotheses. A co statement in context with the words in bold oe which does not reject H ₀ . ft their <i>z</i> v CV Note B0B0M1dM1A1B0dM1A1ft is possible	rrect alue and			
	Candidates who incorrectly test $H_0: \mu_f - \mu_p = 1$ and $H_1: \mu_f - \mu_p > 1$ will score matrix	aximum			
	B0B1M1dM0A0B1dM0A0				
(b)	B1 One correct assumption. Accept e.g. (times taken by) employees chosen follow distribution, times taken follow a normal distribution, employees are selected	a normal			

	independently. Samples are independent is B0								
	B1 2 correct assumptions. Need to see reference to both for each assumption but condone if								
	written as one sentence or statement e.g. both samples are normally distributed and $s^2 = \sigma^2$								
	M1 correct method to find \overline{a} may be implied by awrt 7.02 or may be seen within a								
(c)	calculation e.g. $(s^2 =) \frac{2445 - \frac{(45 \times 7 + 8)^2}{46}}{45}$								
	$\frac{45}{1000}$								
	MI correct method to find $\sum a^2$ may see e.g. 2381+8 ² which may be embedded within								
	their calculation to find the sample variance. Sight of 2445 implies this mark								
	M1 correct method to find s^2 ft their \overline{a} (which cannot be 315) and $\sum a^2$ (which cannot be								
	2381)								
	A1 awrt 3.93								

Question	Scheme	Marks					
Number	F(C + C + C) = 3.6 as	D1					
0(a)	$V_{2}(C + C + C) = 0.03^{2} + 0.03^{2} + 0.03^{2} = 0.00271$						
	$P(C + C + C > 3.5) = P\left(Z > \left(\pm \frac{3.5 - "3.6"}{\sqrt{"0.0027"}}\right) [= -1.9245]\right)$						
	$= 0.9726 \text{ (calc } 0.97285 \text{)} \qquad \text{awrt } 0.973$	A1					
		(4)					
(b)	E(R-R) = 0	M1					
	$Var(R - R) = 0.03^2 + 0.03^2 [= 0.0018]$	M1					
	$P((R-R) > 0.05) = P\left(Z > \left(\frac{0.05 - "0"}{\sqrt{"0.0018"}}\right) [= 1.1785]\right)$	M1					
	$[= 0.119 (calc \ 0.119296)]$						
	$2 \times P((R-R) > 0.05) = 2 \times "0.119"$	M1					
	= 0.238 table or 0.23859calc awrt 0.238/0.239	Alcso					
		(5)					
(c)	$\mu_G = 2.5 + 10 \times 2.3 [= 25.5]$	M1					
	$\sigma_{G}^{2} = 0.1 + 10 \times 0.03^{2} [= 0.109]$	M1					
	Let $X = G - 2T$	M1					
	$\mu_{\rm v} = "25.5" - 2 \times 2.5[= 20.5]$	M1					
	$\sigma_{x}^{2} = "0.109" + 4 \times 0.1[= 0.509]$	M1					
	$P(G-2T<20) = P\left(Z < \frac{20 - "20.5"}{\sqrt{"0.509"}} [= -0.7008]\right)$	M1					
	= 0.242 (table) or 0.2417 (calc) awrt 0.242	Al					
		(7)					
	Notes	Total 16					
(a)	B1 Correct value for $E(C + C + C)$ may be seen e.g. $\frac{18}{5}$ or implied by later calculated M1 Correct method to find the variance. Condone 0.03^4 instead of 0.03^2 may be in	ation nplied by					
	calculation or awrt 0.973						
	M1 Correct standardisation using their mean and sd. Allow $\pm \frac{3.5 - "3.6"}{\sqrt{"0.0027"}}$ may be	e implied					
	by $P(Z > awrt - 1.92)$ or $P(Z < awrt 1.92)$ or $awrt 0.973$						
	A1 awrt 0.973 do not isw						
(b)	M1 for 0 may be seen or implied by later calculation						
	M1 correct method to find Var($R - R$) may be implied by 0.0018 or $\frac{9}{5000}$ or a late	r					
	calculation. Must be a numerical value or expression.						
	M1 Correct standardisation using their mean and Var Allow \pm						
	$\frac{1}{12} \times \frac{1}{100}$						
	A1 awn 0.230 M1 Correct method for finding the mean of G may be implied by 25.5 or later work	c or sight					
(c)	of 20.5 (or may subtract 20 so 0.5)	k of sight					
	M1 Correct method for finding the var of G may be implied by sight of 0.109 prov is not to find the variance of $10R - T$. May be implied by 0.509	ided this					

M1 Realising they need to find $\pm (G - 2T)$. Allow $\pm (G - 2T - 20)$ may be seen as part of
a probability expression or implied by their calculation
M1 Correct method for finding the mean of X which may be from using their mean of G
(which must be correct if no method or value is seen) Allow 0.5
M1 Correct method for finding the var of X which may be from using their variance of G
(which must be correct if no method or value is seen) may be implied by $10 \times 0.03^2 + 0.5$ or
0.509
M1 Correct standardisation using their mean and standardisation for $G-2T$ (condone
G-T) leading to a probability < 0.5 Allow 0 – "0.5" for numerator for correct use of 20
with their "20.5" and their "0.509"
A1 awrt 0.242 from a correct distribution
Note candidates who attempt $10R + T < 2T + 20 \Rightarrow 10R - T < 20$ can score maximum
M1M0M0M1M0M1A0 (the first method mark is implied by the fourth method mark)

Question Number	Scheme	Marks					
7(a)	$\mathrm{E}(D) = x + 2$	M1					
	$Var(D) = \frac{((x+5)-(x-1))^2}{12} [=3]$	M1					
	$\overline{D} \sim N\left(x+2, \frac{3}{n}\right)$	A1					
		(3)					
(b)	" $x + 2$ " = 22.101 + "2" (= 24.101) or " $x + 2$ " = 24.6 \Rightarrow 24.6 - "2" (= 22.6)	M1					
	$24.6 - "2.5758" \sqrt{\frac{"3"}{n}} = "24.101"$ oe	B1M1 dM1					
	n = 80	Alcao					
		(5)					
	Notes	Total 8					
(a)	M1 $E(D)$ correct M1 Correct method to find $Var(D)$ Must be subtracting the correct way round but missing brackets	condone					
	A1 for a fully correct distribution. Either states $N\left(x+2, \frac{n}{n}\right)$ or accept e.g. "normal mean = $x+2$ and variance = $\frac{3}{n}$ oe Must be seen in (a)	al" with					
(b)	M1 For a correct method to find <i>d</i> using <i>x</i> as 22.101 in their " $x + 2$ " from (a) or a correct method to find <i>x</i> by rearranging their " $x + 2$ " to $x = 24.6 - "2$ " Implied by 24.101 or 22.6 or ± 0.499 oe $x + 2 = 24.6$ on its own is M0						
	B1 for awrt ± 2.5758 may be implied by an unrounded value for <i>n</i> of awrt 79.94						
	M1 for $24.6 \pm z \sqrt{\frac{\sigma^2}{n}}$ or "22.6" $\pm z \sqrt{\frac{\sigma^2}{n}}$ where $2.55 < z < 2.6$ (ft their mean and variance						
	from (a) or may restart). May be part of an equation. Their numerical variance do have to be substituted in for this mark.	oes not					
	This mark can still be scored if it is equated inconsistently to 22.101						
	eg 24.6 – $z\sqrt{\frac{\sigma^2}{n}}$ = 22.101 oe eg $z\sqrt{\frac{\sigma^2}{n}}$ = 2.499 or $\sqrt{\frac{\sigma^2}{n}}$ = $\frac{4165}{4293}$ (= 0.970)						
	dM1 dep on both the previous M marks awarded. For setting up a valid equation (a 22.101 instead of "24.101" provided it is correctly paired with "22.6"). Their num variance must be substituted in for this mark.	llow erical					
	24.6-"2.5758" $\sqrt{\frac{"3"}{n}}$ = "24.101" or "22.6"-"2.5758" $\sqrt{\frac{"3"}{n}}$ = 22.101 oe						
	eg "-2.5758" = $\frac{"24.101"-24.6}{\sqrt{"3"}}$ or "2.5758" $\sqrt{"3"}$ = "0.499"						
	A1 cao dependent on seeing a correct equation but allow use of $z = 2.576$ so						
	M1B0M1dM1A1 is possible. Note awrt 79.94 seen can imply B1						