Question Number		Marks							
1.	H_0 : There is no								
	H_1 : There is as	B1							
	Expected	Expected No treatment S			Cop	per sulphate			
	1	123×30 _ 24 <1	123×	63	123×	\$57	M1		
	No Fungus	150 [=24.6]	150	= [=51.66] = 150					
		$\frac{27 \times 30}{5}$ [=5.4]	27×6	63 [-11 24] 27×57		57 = 10.261			
	Fungus	150	150)	-[-11.54] -150 $[-10.20]$				
	Observed	Expec	ted	(O-E)	2	$\underline{O^2}$			
		1	-	E		E			
	20	24.6)	0.86016	•••	16.2601	dM1		
	55	51.6	6	0.21594	•••	58.5559	GIVII		
	48	46./	4	0.03396	•••	49.2939			
	<u> </u>	3.4	1	3.91851	• • •	18.3183			
	0	11.3	4 6	0.983/3		3.0437 7.8047			
	9	10.2	0 Totals:	6 167	•••	156 167			
			10ta15.	0.107	•	150.107			
	$X^{2} = \sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E} - 150$								
	= awrt 6.17						A1		
	v = (3-1)(2-1) = 2								
	$\chi_2^2(0.05) = 5.991$								
	[Reject H ₀ /signi	ificant/in the CF	R] There	is sufficient	eviden	ce to suggest there	A 1 ft		
	is an association	n between <u>treatr</u>	<u>nent</u> and	presence of	fungus	<u>.</u>	AIII		
	1st D1 the the herein	41	No	tes		(
	only appear in eit	ther H_0 or H_1). M	ay be wri	itten in terms of	of indep	bendence.	gus need to		
	1 st M1 attempt at	$\frac{\text{row total} \times \text{col}}{1}$	umn tota	al — (can be im	plied by	v at least one correct <i>F</i>	E to 1dp)		
		total		(r	_			
	2 nd M1 (dep on 1 ^s	st M1) at least 2 c	orrect ter	rms for $\frac{(O-E)}{E}$	$\frac{E^2}{2}$ or	$\frac{O^2}{E}$ or correct expre	essions		
	with their E_i (allow 2sf accuracy) (May be implied by awrt 6.17 or awrt 156.17)								
	3 rd M1 (dep on 2 nd M1) for using $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E}$ -150 (May be implied by awrt 6.17)								
	1 st A1 awrt 6.17								
	$2^{nd} B1$ DoF/ $\nu = 2$ (May be implied by 5.991)								
	3 rd B1ft 5.991 (or better) allow ft from their stated degrees of freedom)								
	^{2^{ad}} AIIt (dep on "treatment" and "	5 rd MI and 3 rd B	I) IOF a c	orrect It conte	xtualise ements	a conclusion. Must ind	wrong way		
	round then A0.								

Question Number	Scheme				
2. (a)	Number all employees [1-800] Use a random number to select the first employee oe Then select every 10th employee from the list of employees	B1 B1 B1 (2)			
(b)	 Number all employees by city/for each city Use random numbers to select 54 employees from London, 31 employees from Edinburgh and 15 employees from Cardiff 	(3) B1 B1 B1			
(c)	e.g Stratified sample reflects the population structure	(3) B1 (1) [7]			
	Notes				
(a) (b)	 1st B1 idea of numbering all employees 2nd B1 idea of randomly selecting a starting point 3rd B1 selecting every kth employee 1st B1 idea of numbering employees for each city 2nd B1 use of random numbers (oe) 3rd B1 54 from London, 31 from Edinburgh, 15 from Cardiff cao 				
(c)	Any correct advantage e.g. Allows calculations [of statistics] for each city/group				

Question Number	Scheme									Mar	ks
3. (a)	$H_0: \rho = 0$			Н	$I_1:\rho$	≠0				B1	
	$[r=]$ $\frac{1}{\sqrt{2.4}}$	83.6 86×3	534 3026	.234	= 0.9	642.	••••		awrt 0.964	M1 A1	
	CV = 0.75	45								B1ft	
	[Reject H ₀	/Sigr	nifica	nt] T	here	is ev	iden	ce of	correlation between annual tea	A 1	
	consumpti	<u>011</u> a1	iu <u>po</u>	pula	<u>11011</u> .					AI	(5)
(b)	Country	А	В	С	D	E	F	G			
	T Rank	5	6	4	7	1	2	3			
	P Rank	7	6	4	3	1	2	5			
	or									M1	
	Country	А	В	С	D	Е	F	G			
	T Rank	3	2	4	1	7	6	5			
	P Rank	1	2	4	5	7	6	3			
	$\sum d^2 = 4$	+0+	0 + 1	6 + 0	+4[=	=24]				M1	
	$[r =]1 - \frac{6}{3}$	(24)	= 0.5	7142	28				awrt 0.571	dM1A1	
	L's J ² 7	(48)	010	,							
(c)	$H \cdot \rho = 0$)		1	Η·	n > ()			B1	(4)
(0)	CV = 0.71	43			$1_1 \cdot \boldsymbol{\mu}$	s	,			M1	
	[Do not reject H_0 / not significant] There is not enough evidence to suggest a										
	positive correlation between annual tea consumption and population.									Alft	
											(3)
]	Notes		
(a)	1 st B1 both	hypo	othese	es cor	rect i	n tern	ns of	ρ (n	nust be two-tailed). Condone use of p		
	M1 use	of for	mula	for <i>r</i>	(May	v be in	mplie	ed by a	awrt 0.964)		
	2^{nd} B1ft 0	0.96).7545	4 5 (or l	oetter) or fi	t 1-tai	iled a	lterna	tive hypothesis (0.6694)		
	2 nd A1 corre	ect co	ontext	ual co their	onclu	sion i I their	inclu r CV	ding te (Ionc	ea consumption/t and population/p. More any non-contextual conclusion)	ust be	
	Allo	w pos	sitive	corre	lation	1		. (15110	sie uny non contextuur conclusion)		
(b)	1 st M1 atter	npt to $\sum d^2$	o rank ² for	their	cour ranks	try fo	or tea	and p	population (at least 4 correct in each) $d^2 - 24$		
		<u> </u>	101	,	Tanks	بر المالي 2')6	24')	⁰	<i>u</i> – 2+)		
	2 nd M1 (dep	o on l	st M1) use	of 1-	7(4	48)				
	A1 awrt 0.5	571 ((or $\frac{4}{7}$)							
(c)	B1 both hyp	pothe	ses co	orrect	in te	rms o	of ρ	or ρ_s	. Condone use of <i>p</i>		
	M1 0.7143	(or b	etter)	1.000	oluci	on in	Judi	10 10 0	sitive tes consumption / and nonslati	on/n (Ionos	ro
	any non-con	ntextu	ual co	nclus	sion)	ft the	ir par	ng pos t (b)	surve, wa consumption/ <i>i</i> and population		

Question Number	Scheme				
4. (a)	$[0 \times 24] + 1 \times 34 + 2 \times 28 + 3 \times 21 + 4 \times 8 + 5 \times 5$	B1*cso			
	120 [= 1.73]	(1)			
(b)	$[s =]120 \times \frac{e^{-1.75} 1.75}{4!} [= 8.15] *$ or $[s =]120 - \left(20.85 + 36.49 + 31.93 + 120 \times \frac{e^{-1.75} 1.75}{3!} + 3.95\right) [= 8.15] *$	B1*cso (1)			
(c)	[r =]18.63	B1 (1)			
(d)	H_0 : Poisson distribution is a good fit.				
	H ₁ : Poisson distribution is not a good fit	B1			
	$\sum \frac{(O_i - E_i)^2}{E_i} = 1.43 + \frac{(8 + 5 - (8.15 + 3.95))^2}{8.15 + 3.95}$	M1 M1			
	= 1.49694 awrt 1.5(0)	A1			
	v = 5 - 1 - 1 = 3	B1			
	$\chi_3^2(0.05) = 7.815$	B1ft			
	[Do not reject H_0 /not significant] There is insufficient evidence to reject the office manager's belief or the number of jobs sent to the printer are consistent with a Poisson distribution.	A1 (7)			
	Notes				
(a)	B1cso correct calculation, minimum working $\frac{34+56+63+32+25}{120} = 1.75*$				
(b)	B1cso fully correct calculation (may be seen in stages) leading to 8.15*				
(c)	For 18.63 (This may be seen in part (b) if labelled as r)				
(d)	1^{st} B1 both hypotheses correct (mention of 1.75 is B0) 1^{st} M1 evidence of combining last 2 cells e.g. 8 + 5 and 8.15 + 3.95				
	2^{nd} M1 use of 1.43 + $\sum \frac{(O_i - E_i)^2}{E_i}$ for remaining cells (Condone cells not combined. N	May be implied			
	by 1.43 + 0.00276+ 0.279 or awrt 1.71)				
	1^{st} A1 awrt 1.50 (allow 1.5 from correct working) 2^{nd} B1 Dof/ $\mu = 3$ implied by a correct critical value of 7.815				
	3^{rd} B1ft 7.815 (allow ft on the ν so may see 9.488 or 11.070 etc)				
	2 nd A1 (dep on 2 nd M1) a correct conclusion which states that the office manager's belief	ef is correct/the			
	data are consistent with a Poisson distribution which must be consistent with the test state $Condone Po(1.75)$ is a suitable model. This mark is independent of the hypotheses	atistic and CV.			

Question Number	Scheme					
5. (a)	$H_0: \mu_H - \mu_M = 15$ $H_1: \mu_H - \mu_M > 15$	B1				
	$z = \frac{56.3 - 39.8 - 15}{\sqrt{\frac{27.2}{38} + \frac{18.5}{45}}}$	M1 M1				
	= 1.4130 awrt 1.41	A1				
	CV = 1.6449 (or better) or $p = awrt 0.0788$	B1				
	Do not reject H_0 /Not significant There is not sufficient evidence to support the professor's claim/there is not	M1				
	sufficient evidence to suggest that undergraduates studying <u>History type</u> more than 15 words/minute faster than undergraduates studying <u>Maths</u> .	A1 (7)				
(h)	$a^2 \sim \sigma^2$ for both History and Matha	R1				
(0)	$S \approx 0$ for both mistory and maths Assume sample sizes are large enough so that CLT applies or \overline{X} is normally	B1				
	distributed for both	(2)				
		[9]				
	Notes	<u> </u>				
(a)	1 st B1 both hypotheses correct in terms of $\mu_{\rm H}$ and $\mu_{\rm M}$ Allow equivalent rearrangements.					
	Allow other letters as long it is clear which is History and which is Maths Must be attached to H_0 and H_1					
	1 st M1 for $z = \frac{a-b-15}{\sqrt{\frac{c}{38} + \frac{d}{45}}}$ with at least 2 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct (allow ±)					
	2 nd M1 for $z = \frac{56.3 - 39.8 - 15}{\sqrt{\frac{27.2}{38} + \frac{18.5}{45}}}$ (allow ±)					
	1 st A1 awrt 1.41					
	2^{nd} B1 for CV = ±1.6449 and compatible sign with their test statistic (allow $p = \text{awrt } 0.0788$)					
	non-contextual comments) May be implied by correct contextual comment.					
	2 nd A1 contextual conclusion that is consistent with their test statistic and					
	their CV. Must mention professor's claim or History, Maths and typing (oe).					
(b)	1 st B1 must mention both. Allow $s \approx \sigma$ for both History and Maths 2 nd B1 either correct assumption					

Question Number	Scheme							
6. (a)	$\overline{[x} = 49.8]$							
	$2 \times 1.96 \left(\frac{\sigma}{\sqrt{8}}\right) = 53.88 - 45.72 = 8.16$ $49.8 + 1.96 \left(\frac{\sigma}{\sqrt{8}}\right) = 53.88 \text{ or}$ $49.8 - 1.96 \left(\frac{\sigma}{\sqrt{8}}\right) = 45.72$	M1						
	$2 \times 2.5758 \left(\frac{\sigma}{\sqrt{8}}\right) = \frac{8.16 \times 2.5758}{1.96} = 10.7238$ $49.8 \times 1.56 \left(\frac{\sigma}{\sqrt{8}}\right) = 43.72$ $2.5758 \left(\frac{\sigma}{\sqrt{8}}\right) = \frac{4.08 \times 2.5758}{1.96} = 5.3618$. B1 M1						
	99%CI = $49.8 \pm \frac{10.7238}{2}$ 99%CI = 49.8 ± 5.3618	M1						
	= (44.438, 55.1619) (awrt 44.4, awrt 55.2) A1 (5)						
(b)	$\hat{\mu} = \bar{x} = \frac{91.2}{8} = 11.4$	B1						
	$\hat{\sigma}^2 = s^2 = \frac{1145.16 - 8 \times "11.4^2}{7} = 15.06857$ awrt 15.1	M1 A1 (3)						
(c)	Combined $\Sigma x = 10.8 \times 24 + 91.2 = 350.4$ Combined $\Sigma x^2 = 1145.16 + 23 \times 17.64 + 24 \times 10.8^2 = 4350.24$	M1 M1A1						
	"4350 24"-32 $\times \left(\frac{"350.4"}{"350.4"}\right)^2$							
	Combined $s^2 = \frac{323}{31} = 16.56$	M1 A1						
	$\frac{s}{\sqrt{n}} = \frac{\sqrt{16.56}}{\sqrt{32}} = 0.719374$ awrt 0.719							
	Notes							
(a)	1 st M1 use of $2z \frac{\sigma}{\sqrt{n}}$ or $z \frac{\sigma}{\sqrt{n}}$ with 1.5 < $ z < 2$. Allow σ_m for $\frac{\sigma}{\sqrt{n}}$ B1 1.96 (or better) and 2.5758 (or better)							
	2 nd M1 attempt to find width or semi-width of 99% CI with $ z > 2$ Allow $\sigma = \frac{4.08 \times \sqrt{8}}{1.06} [= 5.887]$							
	3^{rd} M1 Use of 49.8 ± awrt 5.36 or $49.8 \pm 2.5758 \left(\frac{"5.887"}{\sqrt{8}}\right)$ If σ is incorrect then working must be shown.							
	A1 correct interval with (awrt 44.4, awrt 55.2)							
	Correct answer from less accurate z –values scores M1B0M1M1A1							
(b)	B1 11.4 cao M1 full attempt at s^2 ft their \overline{x} A1 awrt 15.1							
(c)	M1 for correct combined sum (may be implied by combined mean of 10.95) 2nd M1 for attempt at combined sum of squares $1145.16 + (n-1) \times 17.64 + n \times 10.8^2$ (allow 1 error) 1^{st} A1 fully correct expression or awrt 4350							
	3rd M1 using their values in a complete expression for combined s^2 oe							
	$2^{-\infty}$ A1 $s = 10.56$ or $s = awrt 4.0/$ (either of these implies MIMIAIMIAI)							
	4th M1 use of $\frac{1}{\sqrt{n}}$ with combined values 3 rd A1 awrt 0.719							

Question Number	Scheme				
7. (a)	$a = 2 \times 180 - 330 = 30$	B1			
	$b = 4.5^2 \times 2 + 6.7^2 = 85.39$	M1 A1			
(h)	Y - I = 1.8S	(3)			
(0)	$E(X) = 330 - 1.8 \times 180 = 6$	M1			
	$Var(X) = 6.7^2 + 1.8^2 \times 4.5^2 = 110.5$	M1 A1			
	$\mathbf{p}(\mathbf{x} = 0) = \mathbf{p}\left(\mathbf{z} = 0 - 6\right)$				
	$P(X > 0) = P(Z > \frac{1000}{\sqrt{110.5}})$	M1			
	P(Z > -0.57) = 0.7157	$\begin{bmatrix} AI \\ (5) \end{bmatrix}$			
(c)	$T_{T} = S_{1} + S_{2} + S_{3} = 2S_{1} - S_{2} - S_{3}$				
	$I = S_1 - \frac{3}{3} = \frac{3}{3}$	M1 A1			
	E(T) = 0	MI			
	$\operatorname{Var}(T) = \frac{1}{9} \left(2^2 \times 4.5^2 + 4.5^2 + 4.5^2 \right) = \frac{6}{9} \left(4.5^2 \right) = 13.5$	M1			
	(5-0)	N/1			
	$P(T > 5) = P\left(Z > \frac{2}{\sqrt{13.5}}\right)$	MI			
	P(Z > 1.36) = 1 - 0.9131 = 0.0869	A1			
		(6)			
	Notes	[14]			
(9)	B1 30 cao				
(4)	$M1 \ 2 \times Var(S) + Var(L)$				
	A1 85.39 (allow 85.4)				
(h)	1 st M1 Seeing or using $E(X) = 6$ or correct expression for mean				
(~)	$2^{\text{nd}} \text{M1} \text{Var}(L) + 1.8^2 \text{Var}(S) \text{ (condone mixing variances for M1)}$				
	1^{st} A1 for 110.5 (allow 65.61 + 6.7 ²)				
	3^{rd} M1 standardising with their mean and s.d. leading to a probability $p > 0.5$				
(c)	1 st M1 realising the need to write as a single distribution using $\overline{S} = \frac{S_1 + S_2 + S_3}{S_1 + S_2 + S_3}$				
	1 st A1 for $\frac{2S_1 - S_2 - S_3}{2}$				
	3				
	$2^{rd} M1 \text{ using War}(aS) = a^2 \text{Var}(S)$				
	4^{th} M1 standardising with their mean and sd				
	2^{nd} A1 awrt 0.0868 to awrt 0.0869 [calc: 0.08678]				
	Note: Assuming S and \overline{S} are independent leads to $F(T) = 0$ Var $(T) = 27$ $P(T > 5) = 0.1$	67			
	scores M0A0M1M0M1A0				