Question		Scheme		Marks			
1 (a)(i)	Meth		Method 2				
	[<i>y</i> =	$\left[\frac{847}{100}\right] = 8.47$	847+100×1000 [=100847]	M1			
		$\overline{E} = 1000 + \frac{847}{100} = 1008.47 *$	$\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47^*$	A1*			
(ii)	$\left[s_x^2\right]$	$= s_{y}^{2} = \left] \frac{13510.09 - 100 \times "8.47"^{2}}{99} \right]$	$\left[s_{x}^{2}\right] = \frac{101707510.1 - \frac{"100847"^{2}}{100}}{99}$	M1			
		= 64		A1			
				(4)			
(b)	H ₀ :	$\mu_x = 1010$ $H_1: \mu_x \neq 1010$		B1			
				(1)			
(c)	$\frac{X}{"8"}$	$\frac{1010}{\sqrt{100}} = -1.96 \text{oe} \qquad \frac{\overline{X} - 1010}{"8"/\sqrt{100}} =$	1.96 oe	M1 B1			
	$\overline{X} =$	1008.432 $\bar{X} = 1011.568$ awr	t 1008 and 1012(or 1011)	A1			
		\bar{X} "1008.432" $\bar{X} \ge$ "1011.568"		A1ft			
				(4)			
(d)		8.47 is not in the critical region		M1			
	The	machine does not need to be stoppe	ed /reset	Alft			
(a)	Itic	reasonable since the semple size is	(raaganahly) larga	(2)			
(e)	It is reasonable since the sample size is (reasonably) large B1						
			Notes	(1) Total 12			
(a)(i)	M1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100$	1000 or $847 = \sum x - 100 \times 1000$ or 100847 seen				
	A1*	cso correct solution including $\overline{\mathbf{r}} =$	and=1008.47 allow alt notation for \overline{x} but must ref	er to x not			
(ii)	M1	For a correct expression ft their 1008					
	A1	Cao do not ISW Allow 64.00					
(b)	B1	Both hypotheses correct. Must be in	terms of μ . (Allow $H_0: \mu_{\gamma} = 10$ $H_1: \mu_{\gamma} \neq 10$)				
		Mark (c) and (d) together					
	M1		their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$				
(c)	M1		their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X}				
(c)	M1 B1	For ± standardisation with 1010 and SC condone use of 1008.47 for 1010		hey have			
(c)		For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = \pm 1.96 or better seen (Calc a one tail hypotheses in (b) For both limits 1008 or better and 10	or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t 012 or better seen. (condone 1011from correct working	;)			
(c)	B1	For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Cala a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the	or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t	y) bw other			
(c)	B1 A1	For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Cala a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow r	or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t 012 or better seen. (condone 1011from correct working the figures (not z value). Allow use of < and > also allow tion eg [1012, ∞], (∞ , 1008] allow [1012, ∞], [∞ , \overline{X} (c) is awarded. For a correct comment compatible with	y) bw other 1008] h their			

	SC	If the CR in (c) is of the form "1008.432" $< \overline{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B1	Any suitable comment about the sample being large $eg n$ is large

Question			S	cheme							Marks
	Athl	ete	A	В	С	D	E	F	G	Н	
2 (a)	Ran	k SBT	4	2	1	3	5	6	8	7	M1
	FP		1	2	3	4	5	6	7	8	
	$\sum d^2 = 9 + 0 + 4 + 1 + 0 + 0 + 1 + 1 [= 16]$										
		- <u>6("16")</u> <u>8(63)</u>								awrt 0.8	l dM1 A1
											(4)
(b)		$\rho = 0, H_1: \rho > 0$		~~~							B1
		al Value $r_s = 0$									B1
		ot reject H_0 or nce of a positi			does not	lie in th	e critical	region	or there	is no	M1
		is no evidenc on for these a		itive co	rrelation	ı betwee	n seasor	's best	time and	d finishin	g Alft
											(4)
(c)	$r = -\sqrt{1}$	0.22517: 0.1286875×0	5								M1
	· · · · ·	84428								awrt 0.844	A1
											(2)
(d)	Critic	al Value $r = 0$	0.7887 or	CR: <i>r</i>	≥ 0.788	57					M1
	so there is evidence of a positive correlation between season's best time and finishing time for these athletes								.		
				live cori	relation	between	season	s best t	ime and	finishing	A1 ft
				live cori	relation	between	season	s dest t	ime and	finishing	(2)
		for these athle	tes		Note	es					(2)
(a)			tes		Note	es					(2)
(a)	time 1 M1	for these athle	tes k seasonal	best time	Note e (at least	es four corr	rect), May	y be imp	lied by \	$\sum d^2 = 16$	(2) Total 12
(a)	time	for these athle attempt to ran	tes k seasonal d the differ	best time rence bet	Note e (at least ween eac	es four corr ch of the 1	rect), May ranks (at	y be impl t least 3 o	lied by \	$\sum d^2 = 16$	(2) Total 12
(a)	time 1 M1 M1	for these athle attempt to ran Attempt to fin May be implie	tes k seasonal d the differ ed by awrt	best time rence bet 0.81 NB	Note e (at least ween eac if no ran	es four corr h of the 1 ks for SB	rect), May r anks (at T it is M(y be impl t least 3 o	lied by \	$\sum d^2 = 16$	(2) Total 12
(a)	time 1 M1 M1	for these athle attempt to ran Attempt to fin	tes k seasonal id the differ ed by awrt 1 st M1. Usi	best time rence bet 0.81 NB	Note e (at least ween eac if no ran	es four corr h of the 1 ks for SB	rect), May r anks (at T it is M(y be impl t least 3 o	lied by \	$\sum d^2 = 16$	(2)
(a)	time 1 M1 M1 dM1	for these athle attempt to ran Attempt to fin May be implie dependent on $\frac{17}{21}$ or awrt 0 for reverse ran	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w	es four corr h of the r ks for SB vith their	rect), May ranks (at T it is M($\sum d^2$	y be impl t least 3 c	lied by \	$\sum d^2 = 16$	(2) Total 12
(a)	time 1 M1 M1 dM1 A1	for these athle attempt to ran Attempt to fin May be implie dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 res correct.	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w	es four corr th of the r ks for SB vith their 4 3 1 2	rect), May ranks (at T it is M($\sum d^2$ $\sum d^2 = 1$:	y be impl t least 3 c) 58	lied by \sum	$\sum d^2 = 16$ and evaluat	$\frac{A1 \text{ II}}{(2)}$ $\frac{\text{Total 12}}{\text{ing } \sum d^2}$
	time 1 M1 M1 dM1 A1 SC B1	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A ses correct. and H ₁	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be	Note e (at least ween eac if no ran $5 \sum d^2$ 8(63) w 7 8 6 in terms	es four corr th of the r ks for SB vith their 4 3 1 2 of ρ (allo	rect), May ranks (at T it is M($\sum d^2$ $\sum d^2 = 1$: w someth	y be impl t least 3 c) 58	lied by \sum	$\sum d^2 = 16$ and evaluat	AT II (2) Total 12 ing $\sum d^2$
	time 1 M1 M1 dM1 dM1 A1 SC	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1At ses correct. 0 and H ₁ of 0.8333	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign s	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w 7 8 6 in terms hould ma	es four corr th of the r ks for SB vith their 4 3 1 2 of ρ (allo tch there	rect), May ranks (at T it is M($\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s	y be impl t least 3 c D 58 hing that	lied by \sum correct) a	$\sum d^2 = 16$ and evaluat the rho eg p	AT II (2) Total 12 ing $\sum d^2$ (). Must be
	time 1 M1 M1 dM1 A1 SC B1	for these athle attempt to ran Attempt to fin May be implie dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem contradicting	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 res correct. 0 and H1 of 0.8333 lent compar	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign sl ring their	Notee (at leastween eacif no rand $5 \sum d^2$ $8(63)$ 786in termshould maticCV with	es four corr th of the n ks for SB rith their 4 3 1 2 of ρ (allo tch there their r_s	rect), May canks (at T it is M($\sum d^2$ $\sum d^2 = 12$ w someth $H_1 \text{ or } r_s$ - no cont	y be impl t least 3 o) 58 hing that	lied by correct) a looks lik ed but do	$\sum d^2 = 16$ ind evaluat the rho eg p	AT II (2) Total 12 ing $\sum d^2$ (). Must be
	time 1 M1 M1 dM1 dM1 A1 SC B1 B1 B1 M1	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1At res correct. 0 and H ₁ of 0.8333 lent compar non contex	best time rence bet 0.81 NB ing $1 - \frac{6}{3}$ 0 order 5 Must be Sign sl ring their tual com	Notee (at leastween eacif no ranh $5 \sum d^2$ $8(63)$ 786in termshould maCV withments. If	es four corr th of the r ks for SB vith their 4 3 1 2 of ρ (allo tch there their r_s no CV o	rect), May ranks (at T it is M($\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s - no cont r test stat	y be implet t least 3 of 0 58 hing that text need istic give	lied by correct) a looks lik led but do en or the	$\sum d^2 = 16$ and evaluat the rho eg p po not allow test value	AT II (2) Total 12 ing $\sum d^2$ (). Must be or $ CV > 1$
	time 1 M1 M1 dM1 dM1 A1 SC B1 B1	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem contradicting then it is M0 correct conclu- to positive co	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 res correct. and H ₁ of 0.8333 rent compar non contex usion in con	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign sl ring their tual com	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w 7 8 6 in terms hould ma CV with ments. If their value	es four corr th of the n ks for SB rith their 4 3 1 2 of ρ (allo tch there n their r_s no CV o e of r_s fro	rect), May ranks (at T it is M0 $\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s - no cont r test stat pm (a) and	y be implet t least 3 of 0 58 hing that text need istic give	lied by correct) a looks lik led but do en or the	$\sum d^2 = 16$ and evaluat the rho eg p po not allow test value	AT II (2) Total 12 ing $\sum d^2$ or CV > 1
	time 1 M1 M1 dM1 dM1 A1 SC B1 B1 B1 M1 A1ft	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem contradicting then it is M0 correct conclu- to positive con For use of two	tes k seasonal d the differ ed by awrt t 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 ses correct. 0 and H ₁ of 0.8333 hent compar non contex rrelation, so p-tailed test	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign sl ring their tual com itext for the seasonal :	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w 7 8 6 in terms hould ma CV with ments. If their valu best or t	es four corr th of the r ks for SB rith their 4 3 1 2 of ρ (allo their r_s no CV o e of r_s fro ime and j	rect), May ranks (at T it is M0 $\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s - no cont r test stat pm (a) and	y be implet t least 3 of 0 58 hing that text need istic give	lied by correct) a looks lik led but do en or the	$\sum d^2 = 16$ and evaluat the rho eg p po not allow test value	AT II (2) Total 12 ing $\sum d^2$ or CV > 1
(b)	time f M1 M1 dM1 dM1 A1 SC B1 B1 B1 M1 A1ft SC	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem contradicting then it is M0 correct conclu to positive co For use of two May score B0	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 res correct. and H ₁ of 0.8333 lent compar non contex sion in con rrelation , so o-tailed test B1M1A0	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign sl ring their tual com itext for the seasonal :	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w 7 8 6 in terms hould ma CV with ments. If their valu best or t	es four corr th of the r ks for SB rith their 4 3 1 2 of ρ (allo their r_s no CV o e of r_s fro ime and j	rect), May ranks (at T it is M0 $\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s - no cont r test stat pm (a) and	y be implet t least 3 of 0 58 hing that text need istic give	lied by correct) a looks lik led but do en or the	$\sum d^2 = 16$ and evaluat the rho eg p po not allow test value	AT II (2) Total 12 ing $\sum d^2$ (). Must be or $ CV > 1$
	time 1 M1 M1 dM1 dM1 A1 SC B1 B1 B1 M1 A1ft	for these athle attempt to ran Attempt to fin May be implied dependent on $\frac{17}{21}$ or awrt 0 for reverse ran May score M1 both hypothes attached to H ₀ critical value of correct statem contradicting then it is M0 correct conclu- to positive con For use of two	tes k seasonal d the differ ed by awrt 1 st M1. Usi 0.81(0) hkings 1M1dM1A4 res correct. and H ₁ of 0.8333 lent compar non contex sion in con rrelation , so o-tailed test B1M1A0	best time rence bet 0.81 NB ing $1 - \frac{6}{2}$ 0 order 5 Must be Sign sl ring their tual com itext for the seasonal :	Note e (at least ween eac if no ranh $5 \sum d^2$ 8(63) w 7 8 6 in terms hould ma CV with ments. If their valu best or t	es four corr th of the r ks for SB rith their 4 3 1 2 of ρ (allo their r_s no CV o e of r_s fro ime and j	rect), May ranks (at T it is M0 $\sum d^2$ $\sum d^2 = 1$: w someth H ₁ or r _s - no cont r test stat pm (a) and	y be implet t least 3 of 0 58 hing that text need istic give	lied by correct) a looks lik led but do en or the	$\sum d^2 = 16$ and evaluat the rho eg p po not allow test value	AT II (2) Total 12 ing $\sum d^2$ b. Must be or $ CV > 1$

M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to
A1ft positive correlation, seasonal best or time and finishing time. Do not allow contradicting comments.
if the test value or $ CV > 1$ then it is M0

Question	Scheme							
3 (a)	$\frac{86 \times 300}{1200}$ or $\frac{1114 \times 300}{1200}$							
	1200 1200 21.5 and 278.5							
	21.3 and 278.5							
	H ₀ : Making a claim and age are independent (not associated)							
(b)	H ₁ : Making a claim and age are not independent (associated)							
		Observed Expected $\frac{(O-E)^2}{E}$						
		Observed Expected $\frac{(O-E)^2}{E}$ 14 "21.5" $\frac{(14 - "21.5")^2}{"21.5"} = 2.6162$ 286 "278.5" $\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$						
		286	"278.5"	$\frac{\left(286 - "278.5"\right)^2}{"278.5"} = 0.20197$				
		L	"2.616"+ "0.2019"		M1			
		9.941		awrt 9				
	· · ·	(2-1)(3-1) = 2	2		B1			
		· · · · · · · · · · · · · · · · · · ·	$\mathbf{R}: X^2 \ge 9.21[0]$		B1ft			
	-	e CR/significant/ is not independe		sufficient evidence to suggest that making	g a dA1ft			
					(7)			
	3.61	A1		otes	Total 9			
(a)	M1 A1		or both 21.5 and 278.5	ted value. Implied by one correct value.				
(b)	B1	For both hypothe		tion claim and age at least once. Use of "relat	tionship" or			
	M1			ributions to the χ^2 value or awrt 2.62 or awrt	0.202 Allow			
	IVI I		-	lay be implied by awrt 9.94				
	M1	-	values to 7.123 (may alues. Do not ISW)	be implied by a full χ^2 calculation, with at 1	east 3 correct			
	A1	awrt 9.94	ilucs. Do not 15 w j					
	B1		can be implied by a co	orrect critical value of 9.21 or better				
	B1ft	9.21[0] or better	ft their Degrees of free	edom common ones $v = 3$ is 11.345				
	dA1ft Independent of hypotheses but dependent on both M marks being awarded. We will ft their test statistic and CV only. A correct contextual conclusion compatible with their values, which has the words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/ not associated. Do not allow contradicting statements.							
Full calcul								
eg $\frac{(24-14)}{14.12}$	$\frac{(4.33)^2}{33}$	$+\frac{(176-185.67)^2}{185.67}$	$+\frac{(48-50.17)^2}{50.17}+\frac{(6}{50.17})^2$	$\frac{52-649.83)^2}{649.83} + \frac{(14-"21.5")^2}{21.5} + \frac{(286-"2)^2}{278}$	$\frac{78.5")^2}{.5}$			
or awrt 6	.52 + a	wrt 0.5 + awrt 0.	09 + awrt 0.01 + awrt	2.62+0.20				
or $\frac{24^2}{14.33}$	$+\frac{176^2}{185.6^2}$	$\frac{48^2}{7} + \frac{48^2}{50.17} + \frac{652}{649}$	$\frac{14^2}{83} + \frac{14^2}{21.50''} + \frac{286}{278}$	$\frac{2}{5''}$ - 1200				
or awrt 4	r awrt 40.19 + awrt 166.83 + awrt 45.92 + awrt 654.17 + awrt 9.116 + awrt 293.702 - 1200							

S3_2023_01_MS

H ₀ : B(4, 0.5) is a suitable model H ₁ : B(4, 0.5) is not a suitable model Expected frequencies 12.5, 50, 75, 50, 12.5 $\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + + \frac{(10 - "12.5")^2}{"12.5"}$ or $\sum \frac{O^2}{E} - N = \frac{15^2}{"12.5"} + + \frac{10^2}{"12.5"} - 200$	B1 M1 A1
Expected frequencies 12.5, 50, 75, 50, 12.5 $\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + + \frac{(10 - "12.5")^2}{"12.5"}$	
$\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + \dots + \frac{(10 - "12.5")^2}{"12.5"}$	M1 A1
	N/1
or $\sum \frac{1}{E} - N = \frac{1}{12.5"} + \dots + \frac{1}{12.5"} - 200$	M1
=10.84 (or 10.8)	A1
v = 4	B1
$\chi_4^2(0.05) = 9.488 \implies CR \ge 9.488$	B1
Sufficient evidence to say that the research students claim is not supported	Alft
	(8)
	M1
$\frac{360}{3} = 0.45$ *	A1*
200×4	
II	(2)
	B1
	B1
-	B1ft
No significant evidence to say that the binomial is not a reasonable model	B1ft (4)
Notes	(4) Total 14
Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	l,
$4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8	
For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if ne	eded)
$\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	
May be implied by correct answer 10.84 or 10.8	
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8	
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488	
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8	
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their x^2 critical value	and their test
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th	and their test (Allow in en must say
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial).	and their test (Allow in en must say
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8	and their test (Allow in en must say
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p	and their test (Allow in en must say omial)
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/E	and their test (Allow in en must say omial) 8(0.45,4)
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/E v = 3 This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -	and their test (Allow in en must say omial) 8(0.45,4)
May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV a statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV th not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/E v = 3 This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -	and their test (Allow in en must say pmial) 8(0.45,4) - 1)
	Sufficient evidence to say that the research students claim is not supported $[0 \times 15 +]1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10[= 360]$ $\frac{360}{200 \times 4} = 0.45 *$ $H_0 : Binomial is a suitable model$ $H_1 : Binomial is not a suitable model$ $v = 3$ $\chi_3^2(0.05) = 7.815 \implies CR \ge 7.815$ No significant evidence to say that the binomial is not a reasonable model $\frac{1}{200} = 0.5 \times 10^{-10} $

S3_2023_01_MS

Question	n	Scheme	Marks					
5 (a)		$\mu_{A} = \mu_{B}$	B1					
5 (u)	п ₁	$: \mu_A > \mu_B$ oe						
	se	$se = \sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$						
		7 - + 1377 - 1368						
	$z = \pm \frac{1377 - 1368}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$							
	$=\pm 2.339$ awrt ± 2.34							
		The tailed c.v. $ Z = 2.3263$ or CR: $Z \le -2.3263$ or $Z \ge 2.3263$	A1 B1					
		$CR/Significant/Reject H_0$	dM1					
		fficient evidence to support that the mean <u>vield</u> from plants using fertiliser <u>A</u> is						
		eater than the mean <u>yield</u> from plants using fertiliser <u>B</u>	A1ft					
			(7)					
ALT		ding the CI can get B1M1M1A0B1M1A1 unless test statistic given						
	aw	vard M1 for $z = \pm \frac{D}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$ dep on first M1 where $2.3 \le z \le 2.4$						
	Ma	ay be implied by $ D = 8.949$						
(b)		pected profit per plant						
	<i>A</i> :	$3 \times 1.377 - \frac{75}{50}$ B: $3 \times 1.368 - \frac{50}{40}$	M1					
	A:	$\pounds 2.63(1)$ B: $\pounds 2.85(4)$	Al					
	Cla	aire should use fertiliser B	dA1 (3)					
		Notes	Total 10					
(a)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ If A and B not u letter must be defined	ised the					
		For a correct attempt to find the se or se^2 Condone slip in sample sizes May be implied by						
	M1	se = awrt 3.85 or se^2 = awrt 14.8. Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097						
	M1	For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18. 4 rather th and 18. 4 ² Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097	nan 17.8 ²					
	A1	awrt = ± 2.34 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097						
	B1	\pm 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test stat						
	dM1	dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compatitieir test statistic and CV only – need not be contextual but do not allow contradicting non concomments.						
	A1ft	ft their z value and CR only. A correct contextual statement compatible with their test statistic with context of yield (at least once) and A and B	and CV					
		NB id they give a <i>p</i> -value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1						
		A correct method to find the profit per n plants or m kg for either fertiliser A or fertiliser B						
(b)	M1	$n(3 \times 1.377 - \frac{75}{50})$ or $n(3 \times 1.368 - \frac{50}{40})$ or $m(3 - \frac{75}{50 \times 1.377})$ or $m(3 - \frac{50}{40 \times 1.377})$	368))					
		where <i>n</i> and $m \neq 0$ Implied by one correct value for <i>A</i> or <i>B</i>						
		must have 2 values which can be compared. ie using same <i>n</i> or <i>m</i> . Profit per <i>n</i> plant £2.63(1)						
	A1	$\pounds 2.85(4) n$ or profit per <i>m</i> kg awrt $\pounds 1.91 m$ and awrt $\pounds 2.09 m$ (2dp) or cost per <i>m</i> kg awrt $\pounds 1.0 m$ awrt $\pounds 0.91 m$ or number plants per fy awrt $\emptyset 38 m$ and awrt $\emptyset 35 m$	19 <i>m</i> and					
		awrt £0.91 <i>m</i> or number plants per £y awrt 0.38y and awrt 0.35y						
		Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits 105.24 and 114.16)	gain M1A1					

Question		Scheme	Marks					
6 (a)	$\left[\overline{x} = \frac{8}{3}\right]$	$\frac{06.4}{36} =]22.4$	B1					
	"22.4" $\pm 2.3263 \times \frac{0.4}{\sqrt{36}}$							
	· ·	, 22.55) awrt (22.2, 22.6)	A1					
	NB ans	swers which are awrt (22.2, 22.6) gain full marks	(4)					
(b)	-	[The Central Limit Theorem is not required as] the original population is normally distributed						
			(1)					
(c)		within the confidence interval	B1 ft					
	So no 1	reason to doubt the manufacturers claim	dB1 ft					
		($($ $)))$	(2)					
(d)	$\overline{Y} \sim N$	$\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$	B1					
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$	M1					
		= 0.1038 (Calculator gives 0.10295) awrt $0.103 / 0.104$	A1					
			(3)					
ALT	$P(\overline{Y} <$	$848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$	B1 M1					
		= 0.1038	A1					
		Notes	Total 10					
(a)	B1	For 22.4						
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with 1.2 < z < 2.6						
	B1	For z value = 2.3263 or better seen (Calculator gives 2.3263479)						
	A1	awrt (22.2, 22.6) This does not imply the B1						
(b)	B1	For reference to the data is modelled by normal distribution						
(c)	B1 ft	ft their CL For a comment on whether 22.5 (or it) is or is not in their CL allow equange for CL						
	dB1 ft	Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe						
(d)	B1	for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have \overline{Y} or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850, 2.5)$ seen or						
	M1	For \pm (a correct standardisation) implied by a correct answer						
	A1	awrt 0.103 to 0.104						
L	1	1						

Question		Scheme	Marks
7 (a)		time to serve a customer at a standard checkout	
		$P_2 + P_3 \qquad [Q \sim] N(720, 1200)$	B1
	P(Q < 6)	$660) = P\left(Z < \pm \frac{660 - "720"}{"\sqrt{1200}"}\right) \left[= P\left(Z < -1.732\right)\right]$	M1
	= 0.041	8 (Calculator gives 0.04163) <u>awrt 0.041 / 0.042</u>	A1
ALT	for the E	21 8/1	(3)
ALI			
	B1 for	$[Q \sim] N\left(12, \frac{1}{3}\right)$	
	M1 for	$P(Q<11) = P\left(Z < \pm \frac{11 - "12"}{\sqrt{"\frac{1}{3}"}}\right) [= P(Z < -1.732)]$	
(b)	Assume	the time taken to serve customers is independent	B1
	P-time	e to serve a customer at an express checkout	(1)
(c)		$+P_2 + P_3) - (R_1 + + R_7)$ [S~]N(20,1648)	M1 A1
	P(S > 0)	$P = P \left(Z > \pm \frac{0 - 20}{\sqrt{1648}} \right) \left[= P \left(Z > -0.492 \right) \right]$	M1
	= 0.687	9 (Calculator gives 0.6888) <u>awrt 0.688 / 0.689</u>	A1
ALT	For the I	M1A1M1	
	M1 for	$N\left(\frac{1}{3},\ldots\right)$	
	A1 for N	$J\left(\frac{1}{3},\frac{103}{225}\right)$	
		$0 - \frac{1}{2}$	
	M1 for :	$\pm \frac{0 - \frac{1}{3}}{\sqrt[1]{103/225}"}$	
		$\sqrt[10]{225}$	
		Notes	(4) Total 8
			I Utal o
(a)	B1	For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in standardisation	
	1.1	For standardising using 660, their mean \neq 240 or 4 and their standard deviation \neq 20 or	$\frac{1}{2}$. If no
	M1	distribution given the mean and sd must be correct in the standardisation. Allow \pm star	3
	A1	awrt 0.041 or awrt 0.042	
(b)	B1	A correct assumption. Must have context of customers or time and independence(allow	v random)
(c)	M1	For N(±20,) or N $\left(\frac{1}{3},\right)$ maybe awarded in standardisation	
	A1	For N(±20, 1648) or N $\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisation	
	M1	For standardising using 0 and mean of ± 20 or $\pm 1/3$ and their standard deviation. The implied by baying just the mean on the numerator. Allow \pm stand	0 may be
	A1	implied by having just the mean on the numerator Allow ± stand awrt 0.688 to 0.689	
	•	·	