Question Number	Scheme									
1 (a)	Number	the 1200 students (1 – 1200)	B1							
	Use a rar	B1								
	Select ev	Select every 20 th person on the list								
(b)(i)	They onl	y need to generate one random number	B1							
			(1)							
(b)(ii)	It is not sampling	random as the list is ordered alphabetically or not all combinations of gunits are possible	M1							
	e.g. unlik	cely siblings would be selected	A1							
			(2)							
(c)	Number	of Y9 students = $\frac{200}{1200} \times 60$ [= 10]	M1							
	The strat	ified sample gives a better proportion or is more representative oe	A1							
			(2)							
		Notes	Total 8							
1 (a)	B 1	numbering the students (Allow $0 - 1199$).								
	B 1	using a random starting point. Must be between 1 and 20 (Allow $0 - 19$).								
	B 1	selecting every 20 th person.								
(b)(i)	B1	a suitable comment.								
(b)(ii)	M1	a suitable comment.								
	A1	a suitable example.								
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$								
	A1	a correct explanation.								

Question Number	Scheme								
2 (a)	Use of $\bar{x} \pm z \times \frac{1.9}{\sqrt{10}}$; $z = 1.96$								
	(52.54	(52.54, 54.897) awrt 52.5 and 54.9							
			(4)						
(b)	Use of 1.	Use of $1.5 > 2 \times z \times \frac{1.9}{\sqrt{n}}$ oe ; $z = 2.5758$ (or better)							
	$1.5 > \frac{9.7}{2}$	$\frac{8804}{\sqrt{n}}$	dM1						
	<i>n</i> > 42.5	n > 42.58 So $n = 43$							
		Notes	Total 8						
2 (a)	M1	for use of correct expression with 1.9, 10 and $1 < z < 3$							
	B1	for $z = 1.96$							
	A1	for awrt 52.5							
	A1	for awrt 54.9							
(b)	M1	use of $z \times \frac{1.9}{\sqrt{n}}$ in a correct inequality with 0.75 or 1.5 and $2 < z < 3$ (allow written	n as an						
	D1	equation) $f_{on} = 2.5758 \text{ (on better)}$							
	D1	10r $z = 2.5/50$ (or beller) dependent on 1 st M1, for solving a correct inequality for the width of the 00% CI (all	0.11/ 0.12						
	dM1	equation rather than an inequality)	ow an						
	A1	cao							

Question Number	Scheme									Marks			
	Driver		A	В	С	D	E	F	G	Н	Ι	J	
3 (a)	Rank F	'QL	1	5	3	2	6	4	8	9	10	7	M1
	FP	_	1	2	3	4	5	6	7	8	9	10	
	$\sum d^2 = 0 + 9 + 0 + 4 + 1 + 4 + 1 + 1 + 9 [=30]$											M1	
	$r_s = 1 - \frac{6(30)}{10(99)}$										dM1		
	= 0.8181818 awrt 0.818										A1		
													(4)
(b)	$H_0: \rho = 0, H_1: \rho > 0$									B1			
	Critical Value $r_{s} = 0.7455$ or CR: $r_{s} \dots 0.7455$									B1			
	Reject H ₀ or significant or lies in the critical region									M1			
	There is sufficient evidence of a positive correlation between fastest qualifying lap time and finishing position for these Formula One racing drivers									A1			
											(4)		
		T				Ν	otes						Total 8
3 (a)	M1	M1 attempt to rank fastest qualifying lap (at least four correct).											
	M1	finding the difference between each of the ranks and evaluating $\sum d^2$											
	dM1	M1 dependent on 1 st M1. Using $1 - \frac{6 \sum d^2}{10(99)}$ with their $\sum d^2$											
	A1	$\frac{9}{11}$ c	or awrt	0.818									
(b)	B1	both l	hypothe	eses cor	rect. M	ust be in	n terms o	of ρ . N	lust be	attached	1 to H_0 a	and H ₁	
	B1	critica	al value	e of 0.74	455								
	M1	A cor	rrect sta	tement	compai	ring thei	ir CV w	ith their	$r_s - n$	o contex	kt neede	ed but do no	t allow
	1711	contra	adicting	g non co	non contextual comments.								
	A1	corre	ct conc	lusion v	vhich is	rejectir	ng H ₀ , w	hich m	ust men	tion lap	time a	nd finishin	g position.

Question Number	Scheme									
	H_0 : There is no association between type of property and the time taken to sell it									
4	H_1 : The	ere is an associa	tion between typ	e of	property an	d the time take	en to sell it	BI		
	Expect	ed	Bungalow		Flat	House	Total			
	Within	3 months	10.496		31.488	40.016	(82)	M1		
	More t	han 3 months	5.504		16.512	20.984	(43)	A1		
	Total		(16)		(48)	(61)	(125)			
	Ol	oserved	Expected		$\frac{(O - E)}{E}$	$(E)^2$	$\frac{O^2}{E}$			
	7		10.496		1.164	4	4.6684			
		29	31.488		0.196	5	26.7085	JN (1		
		46	40.016		0.894	8	52.8788			
		9	5.504		2.220	5	14.7165	AI		
		19	16.512		0.374	8	21.8628			
		15	20.984		1.706	64	10.7224			
			Tot	tals	6.55	7	131.557			
	$\left[X^{2} = \right] \sum \frac{(O-E)^{2}}{E} \text{or} \sum \frac{O^{2}}{E} - 125$									
	= 6.3	557					awrt 6.56	A1		
	v = (2 - 1)(3 - 1) = 2									
	$c^{2}(0.05) = 5.991 \implies CR: X^{2} = 5.991$									
	[in the C	[in the CR/significant/Reject H_0] There is sufficient evidence to suggest that there is an								
	association between type of property and the time taken to sell it.									
	Notes									
4	B1	Both hypotheses correct. Must mention "type of property" and "time taken" at least once. (may be written in terms of independence)								
	M1	Some attempt at $\frac{(\text{Row Total})(\text{Column Total})}{(\text{Grand Total})}$ Can be implied by at least one correct E_i								
	A1	All expected fr	equencies correct							
	dM1	dM1 Dependent on 1 st M1 for at least 2 correct terms for $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct express								
		with their E_i	Accept 2 sf accura	cy.						
	A1	At least 3 correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to 2dp or better. Allow truncated answers.								
	dM1	Dependent on 2 nd M1 For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$								
	A1	awrt 6.56								
	B1	v = 2 This ma	rk can be implied	by a	correct critic	cal value of 5.99	1			
	B1	5.991								
		Dependent on	the 3^{rd} M1 and 3^{rd}	B1.	A correct con	ntextualised con	clusion which is reje	cting H ₀		
	A1 Must mention type and time . Contradictory statements score A0. e.g. "significant, do n H_0 ".Condone "relationship" or "connection" here but not "correlation".									

Question Number		Scheme							
5 (a)(i)	$\left[\overline{x} = \frac{36}{50} \right]$	$\frac{10}{0} \Rightarrow \boxed{\overline{x} = 72.2} \qquad s_x^2 = \frac{260955.6 - 50(72.2)^2}{50 - 1} = 6.4$	B1; M1 A1						
5(a)(ii)	$\left[\overline{y} = \frac{25}{50} \right]$	$\frac{85}{0} \Rightarrow \boxed{\overline{y}} = 51.7 \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$	B1 A1						
			(5)						
(b)									
	_ '72.2	2'-'51.7'-20							
	$z = \frac{1}{\sqrt{1-1}}$	$\frac{\overline{6.4'}}{50} + \frac{2.3'}{50}$	M1 M1						
	=1.198	86 awrt 1.20	A1						
	One taile	zd c.v. Z = 1.6449 or CR: Z 1.6449	B1						
	Not in C	R/Not significant/Do not reject H _o	M1						
	No signi	ficant evidence to support Tammy's belief	Al						
			(7)						
(c)	Since the	e sample is large the CLT applies.	M1						
	No need	to assume (the weights) are normally distributed.	A1						
			(2)						
(d)	Assumed	1 that $s^2 = \sigma^2$	B1						
			(1)						
		Notes	Total 15						
5 (a)(i)	B1	Notes $\overline{x} = 72.2$	(1) Total 15						
5 (a)(i)	B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$	(1) Total 15						
5 (a)(i)	B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))	(1) Total 15						
5 (a)(i)	B1 M1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$	(1) Total 15						
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)	(1) Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 M1 B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non cor comments.	2 2 - - - - - - - - - - - - -						
5 (a)(i) 5(a)(ii) (b)	B1 B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non corrorments.A correct contextual statement. Allow the difference in mean weights is not gravely a statement.	reater than						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 M1 A1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non correct method.A correct contextual statement. Allow the difference in mean weights is not gr20 kg	Total 15						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 M1 A1 A1 M1 A1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow $\pm \sqrt{\frac{c}{50}+\frac{d}{50}}$ awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non correct method.A correct contextual statement. Allow the difference in mean weights is not graphing20 kgA suitable comment that mentions large and CLT	(1) Total 15 2 2 1						
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 B1 M1 A1 A1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))6.4 $\overline{y} = 51.7$ 2.3Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a, b, c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non cor comments.A correct contextual statement. Allow the difference in mean weights is not gr20 kgA suitable comment that mentions large and CLTA correct answer, context not required.	Total 15						

Question Number	Scheme									
6 (a)	$0 \times 1 + 1 >$	$\frac{0 \times 1 + 1 \times 10 + 2 \times 23 + 3 \times 15 + 4 \times 19 + 5 \times 9 + 6 \times 3}{2} = 3 *$								
0 (a)	80									
		$a^{-3} \times 2^{5}$								
(b)	$r = e^{-3} \times 80 = 3.983 s = \frac{e^{-5} \times 3^{-5}}{5!} \times 80 ;= 8.066$									
	t = 80 - (r + 11.949 + 17.923 + 17.923 + 13.443 + s); = 6.713									
(c)	H ₀ : Poisson (distribution) is a reasonable/suitable/ sensible (model)									
	H_1 : Pois	sson (di	stribution) is not	a /reasonable/sui	table/ sensible (model).		DI		
	Numb	er of	Combined	Combined	$(O-E)^2$	O^2				
	ema	uils	Observed	Expected	E	Ε				
	≤	1	11	15.932	1.5267	7.5947				
	2		23	17.923	1.4381	29.5151				
	3		15	17.923	0.4767	12.5537		M1		
	4		19	13.443	2.2971	26.8541				
	5		9	8.065	0.1083	10.0433				
	≥	6	3	6.714	2.0544	1.3404				
				Totals	7.901	87.901				
	$X^2 = \sum$	$\frac{O-E}{E}$	$\frac{O^2}{E}$ or $\sum \frac{O^2}{E}$	- 80				M1		
	= 7.9	901				awr	t 7.90	A1		
	v = 6 - 1	-1 = 4						B1		
	$C_{4}^{2}(0.10)$	= 7.779	\Rightarrow CR: X ²	7.779				B1		
	[since X ²	$^{2} = 7.90$	does lie in CR, t	hen there is suffi	cient evidence t	o reject H ₀]				
	Sufficien	t evider	nce to say that Po	oisson is not a rea	sonable model			A1		
			•					(7)		
		1		Notes				Total 12		
6 (a)	B 1	For a c	correct method to s	shown that the mea	n is 3					
(b)	M 1	Use of	$\frac{\mathrm{e}^{-\lambda} \times \lambda^r}{r!} \times 80 \text{ or}$	May be implied	by a correct ans	wer for either r or	ſS			
	A1	<i>r</i> = 3.	983 and $s = 8.00$	66 (allow $r = 3.9$	984 and $s = 8.06$	64 as these come f	from ta	bles)		
	M1	A corr	ect method that en	sures that expected	1 totals = 80					
	A1	t = 6.'	713 (allow $t = 6$.)	714 if tables used)					
(c)	B1	Both h	ypotheses correct.	Must mention Poi	sson at least once					
	M1	Combi	ning 0 emails and	1 email. Must hav	e both observed a	nd expected freque	ncies			
		An atte	$\frac{1}{2}$ $\frac{1}$	tistic, at least 2 con	rect expressions/	values (to awrt 2dp	9			
	AI D1	$\frac{awrt}{v-4}$	This mark can be	implied by a correct	g seen	f 7 779				
	DI R1	v = +				1 1.117				
		1.//9	aat aan alvairan 1	ad an their V^2	1	aniti a al vial				
	Al	A1 A correct conclusion based on their X^2 value and their χ^2 critical value								

Question Number		Scheme	Marks							
7 (a)	Let X rep	present $B_1 + B_2 - C_1$								
	$X \square N(0)$	□ N(0.268,0.015633) awrt 0.0156								
	P(X < 0)	$P(Z < \frac{0 - 0.268}{\sqrt{0.015633^{"}}} (= -2.14))$								
		(=1-0.9838) = 0.0162	A1							
			(4)							
(b)	Let Y rep	resent $2.5B_1 + 3C_1 + 3C_2$								
	$Y \square N(6.$.918,0.071478) awrt 6.92, 0.0715	M1 A1							
	$\mathbf{P}(Y > 7)$	$= P\left(Z > \frac{7 - "6.918"}{\sqrt{"0.071478"}} (= 0.31)\right)$	M1							
		(=1-0.6217) = 0.3783 (Calculator gives 0.3795) $0.378-0.380$	A1							
			(4)							
(c)	Mean = 2	2.94w	B1							
	Standard	deviation = $0.084\sqrt{5} w$ (= 0.188w)	B1							
			(2)							
(d)	$\frac{6-2.94}{0.084\sqrt{5}}$	$\frac{w}{w}$, -1.2816	M1;B1							
	-1.2816	$\times 0.084\sqrt{5} w + 2.94w \dots 6$	dM1							
	w 2.22	2 So $w = 2.23$	A1							
			(4)							
		Notes	Total 14							
7 (a)	M1	for setting up normal distribution with mean 0.268								
	A1	for a correct expression for variance (= 0.015633) or for standard deviation (= 0.125 .)							
	M1	for standardising with 0, 0.268 and their standard deviation								
	A1	awrt 0.0162 (Allow awrt 0.0160 as this comes from a calculator)								
(b)	M1	for setting up normal distribution with mean awrt 6.92								
	A1	for a correct expression for variance (= 0.071478) or for standard deviation (= 0.267 .)							
	M1	for standardising with 7, 0.071478 and their standard deviation								
	Al	for answer between 0.378 – 3.80								
(c)	B1	for 2.94w								
	B1	for $0.084\sqrt{5w}$ or awrt $0.188w$								
(d)	M1	for standardising using their mean and their standard deviation = z where $1 < z < 1$.	5							
	B1	for -1.28								
	dM1	dependent on M1, for solving their inequality								
	A1	awrt (£)2.23								