Question Number		Scheme	Marks
1 (a)	$\overline{x} = 11.4$	2	B1
	$s^2 = \frac{131}{}$	$\frac{0.464 - 10 \times 11.42^2}{9}$	M1
	= 0.7	,	A1
	0.7		(3)
(b)	z value fo	or 95% CI is 1.96	B1
	'11.42'±	$1.96 \times \frac{0.8}{\sqrt{10}}$	M1
		., 11.915) awrt (10.92, 11.92)	A1 A1
			(4)
(c)		$.92$ ", 0.8^2)	M1
	P(Y < 10.	5) = $P\left(Z < \frac{10.5 - "11.92"}{0.8}\right) [= P(Z < -1.775]$	M1
	= 0.0383	7 awrt 0.038	A1
			(3)
		Notes	Total 10
1(a)	B1	for 11.42 cao	
	M1	for use of $s^2 = \frac{\sum x^2 - n\overline{x}^2}{n-1}$	
	A1	for 0.7 cao	
(b)	B1	for writing or using 1.96 (or better from calculator 1.9599)	
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ ft their z value, $1 < z < 2$ and their 11.42	
	A1	for awrt 10.9 or awrt 11.9	
	A1	for awrt 10.92 and awrt 11.92	
(c)	M1	for identifying the normal distribution with the upper confidence interval value as as standard deviation (may be seen in standardisation)	s mean and 0.8
	M1	for standardising with 10.5, their mean (which must be in their confidence interval limits) from part (b)) and standard deviation = 0.8	al (including
	A1	awrt 0.038 (tables = 0.0375)	

Question Number		Scheme	Marks
2(a)	$H_0: \mu_{yea}$	$\mu_{r7} = \mu_{year8} \qquad H_1: \mu_{year7} \neq \mu_{year8}$	B1
	$SE = \sqrt{\frac{2}{2}}$	$\frac{38}{240} + \frac{42}{240}$	M1
	$z = \frac{103}{S}$		M1
	$=(\pm)3$.464 $(2\sqrt{3})$ awrt (\pm) 3.46	A1
	$Z_{critical} =$	2.5758	B1
	In CR/Sig	gnificant/Reject H ₀	M1
	There is s	sufficient evidence to suggest that the regional education <u>officer</u> 's claim is not here is a difference between the <u>mean scores</u> of the two year groups.	A1
(1)	GI T 11		(7)
(b)	CLT allo	ws us to use <u>sample means</u> (oe) being normally distributed	B1 (1)
		Notes	(1) Total 8
		both hypotheses correct. Allow equivalent rearrangements. Must be in terms of μ	Totalo
(a)	B1	If using e.g. $\mu_A = \mu_B A$ and B must be clearly identified with year groups	
	M1	for use of SE with 38 and 42 (may be implied by SE = awrt 0.577)	
		for a correct standardisation expression using 103, 101 (in either order) and SE = aw	rt.0577
	M1	or ft their stated SE or if not stated (i.e. only seen in standardisation) only allow $\sqrt{\frac{38^2}{240} + \frac{42^2}{240}}$ or $\sqrt{\frac{\sqrt{3}}{24}}$	
	A1	awrt 3.46 or awrt –3.46 allow <i>p</i> value of awrt 0.000266	0 240
	B1	CV = 2.5758 or better (seen)	
	M1	a correct statement linking their test statistic and their CV – need not be contextual ballow contradicting non contextual comments.	out do not
	A1	do not allow a ft conclusion here. a correct contextual statement (dependent on 2^{nd} M1) which must be consistent with statistics and CV and which also must reject H_0 . It must mention the officer or mean	n scores.
(b)	B1	a correct explanation which must mention sample means oe (population means are n distributed is B0) ignore extraneous non-contradictory comments	ormally

Question Number		Scheme	Marks	
3 (a)	$r = \frac{S}{\sqrt{S}}$	$\frac{S_{xy}}{S_{xx}S_{yy}} = \frac{15.1608}{\sqrt{6.90181 \times 45.304}}$	M1	
	= 0.8573	awrt 0.857	A1	
				2)
(b)	0 -	$0, H_1: \rho > 0$	B1	
		value 5% = 0.5494	B1	
	Significa	nt evidence to suggest that there is a <u>positive correlation</u> between <u>MR</u> and <u>BMI</u>	B1	2)
(c)	MR and	BMI measurements are normally (or bivariate normal) distributed	B1	3)
(0)	Witt and	Divir measurements are normany (or orvariate norman) distributed		1)
(d)	Ranks for	r MR: 9 10 6 7 8 4 5 1 2 3	B1	
	$\sum d^2 =$	1+9+9+1+4+1+16+9+9+1 [= 60]	M1	
	$r_s = 1 -$	$\frac{6(60)}{10(99)}$	M1	
	= 0.63	awrt (\pm) 0.636	A1	
			(-	4)
(e)	$[H_0: \rho =$	$= 0 , H_1: \rho \neq 0]$		
	Critical v	value 0.6485	B1	
	There is i	insufficient evidence of a correlation between MR and DPA	B1	
		Notes	Total 12	2)
		_		
(a)	M1	for use of $\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$		
	A1	awrt 0.857		
(b)	B1	both hypotheses correct. Must be in terms of ρ . Must be attached to H_0 and H_1 D hypotheses in words on their own.	o not allow	
	B1	critical value of 0.5494		
	B1	correct conclusion rejecting H_0 which must mention positive correlation, MR and must be consistent with their CV and their r , with their CV < 1 and their r < 1	BMI which	
(c)	B1	correct assumption referring to MR and BMI needing to be normally distributed		
(d)	B1	attempt to rank MR (at least four correct) (may be implied by correct $\sum d^2$ or corrallow reverse ranks for MR: 2 1 5 4 3 7 6 10 9 8	ect answer)	
	M1	for finding the difference between each of the ranks and evaluating $\sum d^2$ (implied by $\sum d^2 = 60$ or for reverse ranks $\sum d^2 = 270$)		
	M1	using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$		
<u></u>	A1	awrt (±) 0.636		
(e)	B1	critical value of 0.6485 (or -0.6485 if $r_s < 0$)		
(e)	correct conclusion which is not rejecting H_0 , which must mention MR and DPA			
	B1	which must be consistent with their CV and their r_s , with their CV < 1 and their	r < 1	

Question Number			Scheme					Ma	rks
4(a)	Non rando	om sampling/desc	ription of non ra	andom samplin	g oe			B1	
		erent groups of th	•		_			B1	
									(2)
(1.)	H_0 : Sub	ject enjoyed the n	nost and group a	re independent	,			D1	
(b)	H ₁ : Sub	ject enjoyed the m	ost and group a	re not independ	dent			B1	
	1					T-4-1			
		Expected	Maths	Physics	Chemistry	Total			
		Group A	21.06	8.97	8.97	(39)		M1	
		Group B	32.94	14.03	14.03	(61)			
		Total	(54)	(23)	(23)	(100)			
	Ob	served	Expected	(0 -	$\frac{(E)^2}{E}$	$\frac{O^2}{E}$			
		16	21.06	1.215	745	12.15575			
		10	8.97		272	11.14827			
		13	8.97	1.810)58	18.84058		dM1	
		38	32.94	0.777	728	43.83728			
		13	14.03	0.075		12.04562			
		10	14.03	1.157	584	7.127584			
		Tota	als 3	5.155		105.155			
	$\left[X^2=\right]$	$\sum \frac{(O-E)^2}{E} \text{or} $	$\sum \frac{O^2}{E} - 100$)				dM1	
	= 5.155					awrt 5.16 or awrt	5.15	A1	
	v = (3 -	1)(2 - 1) = 2						B1	
	$\chi_2^2(0.05)$	= 5.991						B1ft	
	_	R/not significant/Dijoyed and group a			ıfficient evide	ence to suggest tha	at	A1	
	<u>sabject</u> en	goyed and group t	ire not independ	iciit					(8)
(c)(i)	No change	e (as the test is sti	ll the same)					B1	
(ii)	No chang	e (as $v = 2$ still)						B1	
(iii)	Test statis	tics would double	e (= 10.310) (as all observed	and expected	values are double	ed.)	B1	
						subject enjoyed ar	nd		
(iv)	group are 5.991)	not independent)	as test statistic i	s now greater t	han the critic	al value (10.31 >		B1	
	3.771)								(4)
				Notes				Tota	al 14
(a)	B1		ting participant			r a description of a ey leave the school			
	B1			to selection fro	om different g	groups until quota	is fille	d	
(b)	B1	both hypotheses (may be written			ct" and "grou	p" at least once.			
	M1	Some attempt at		Column Total)	Can be impli	ed by at least one	correct	E_i to	1 dp
	dM1	dependent on 1st			s for $\frac{(O-E)^2}{F}$	or $\frac{O^2}{E}$ or correct ex	pression	ons with	1
	UIVI I	their E_i Accept			E .	L			

	dM1	dependent on 2 nd M1 for applying $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 100$
	A1	awrt 5.16
	SC	If no expected frequencies shown, then an answer of awrt 5.16 scores M0M0M1A1
	B1	v = 2 may be implied by a correct critical value of 5.991
	B1ft	5.991 allow ft from their stated degrees of freedom (may see 3.841, 7.815, 9.488, 11.070)
	A1	dependent on 3 rd M1 and 3 rd B1. A correct contextualised conclusion which is not rejecting H _o Must mention subject and group. Contradictory statements score A0 e.g. "significant, do not reject H _o " If no hypotheses or hypotheses wrong way round do not award.
(c)(i)	B1	a correct statement
(ii)	B1	a correct statement
(iii)	B1	a correct statement which must state that the test statistic doubles
(iv)	B1	a correct statement with correct reasoning

Qu. No.		Scheme	Marks
5 (a)	Let $T = tc$	otal time taken	
	<i>T</i> ~ N(41	$+81+57,5.2^{2}+4.2^{2}+6.6^{2}$ [So $T \sim N(179, 88.24)$]	M1 A1
	P(T > 180	$0) = P\left(Z > \frac{180 - 179}{\sqrt{88.24}}\right)$	M1
	=1-0.54	438 = 0.4562 (calculator gives 0.4576) awrt 0.456 to 0.458	M1 A1
(1.)	T + 17 1	'CC 1	(5)
(b)	Let $Y = d$ $Y \sim N(16)$	ifference between run and swim or Let $D = R - S - 20$,70.6) or $D \sim N(-4, 70.6)$	D1
	,		B1
	P(Y > 20)	$P(D > 0) = P\left(Z > \frac{20 - 16}{\sqrt{70.6}}\right) \qquad \text{or} \qquad P(D > 0) = P\left(Z > \frac{0 - (-4)}{\sqrt{70.6}}\right)$	M1
	=1-0.6	844 = 0.3156 (calculator gives 0.3170) awrt $0.316/0.317$	M1 A1
			(4)
(c)	P(T > t)	$= 0.95 \Rightarrow P\left(Z > \frac{t - 179}{\sqrt{88.24}}\right) = 0.95 \Rightarrow \frac{t - 179}{\sqrt{88.24}} = -1.6449$	M1 B1
	t = 163.54	48 awrt 164	A1
			(3)
(d)		he number of times greater than 3 hours in 6 attempts	
	` '	,"0.456")	B1ft
	$P(X \ge 1)$	$= 1 - P(X = 0) = 1 - 0.5438^{6}$ $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.5438^{6}$	M1
	= 0.9741.	(using the calculator value gives 0.9745) awrt 0.974/0.975	A1 (2)
(a)	og The tis	mag for each event are not new likely to be independent	M1
(e)		mes for each event are not now likely to be independent orrect / calculation is not valid	A1 (2)
	turio is co	Notes	Total 17
(a)	M1	for setting up a normal distribution with a mean $41 + 81 + 57 (= 179)$	
	A1	for a correct expression of variance implied by (variance =) 88.24 or for s.d. =	= awrt 9.39
	M1	for standardising with 180, their mean and their standard deviation	
	M1	use of $1 - p$ with 0.5	
	A1	awrt 0.456 to 0.458	
(b)	B1	For $N(\pm 16,70.6)$ or $N(\pm 4,70.6)$ May be seen in a calculation	
	M1	for standardisation with \pm 20 or 0, their mean and their s.d.(their var must be must be compatible e.g. $-$ 20 with $-$ 16	>0)
	M1	use of $1 - p$ with 0.5	
	A1	awrt 0.316/0.317	
(c)	M1	for standardising using their mean and standard deviation = z value $1 < z <$	2
	B1	for correct z value \pm 1.6449 or better. Must have compatible sign with standard	ardisation
	A1	awrt 164	
(d)	B1ft	for writing or using B(6,'0.4562') ft their answer to part (a) to 3sf	
	3.54	use of $P(X \ge 1) = 1 - P(X = 0) [= 1 - (1 - their(a))^6]$	
	M1	allow $P(X \ge 1) = P(X = 1) + P(X = 2) + + P(X = 6)$	
	A1	awrt 0.974/0.975	
(e)	M1	Reference to the events no longer being independent (he might get tired after events now follow consecutively)/ calculation does not include time between	
	A1	Correct conclusion (Jane is correct) with corresponding reason	

Qu. No.		Scheme	Marks
6(a)	P(S < 30	$(3.5) = P\left(Z < \frac{303.5 - 310}{4}\right) \text{or} P(S > 315.5) = P\left(Z > \frac{315.5 - 310}{4}\right)$	M1
		08 or 0.084565 awrt 0.052 or awrt 0.084/0.085	A1
	So $a = 5$.	2 or $b = 8.5$ awrt 5.2 or awrt 8.4/8.5	A1
		100 - 10.6 - 16.3 - 19.6 - 18.4 - 13.6 - 7.8 - 5.2	M1
	Both $a =$	5.2 and $b = 8.5$ awrt 5.2/5.3 and awrt 8.4/8.5	A1 (7)
	II . The	annual distribution N(210, 16) is a switchlass of all The data are consistent swith the	(5)
(b)	model.	normal distribution N(310, 16) is a suitable model/The data are consistent with the normal distribution N(310, 16) is not a suitable model/The data are not consistent with 1.	B1
	$X^2 = X$	$\sum \frac{(O-E)^2}{E} = \frac{\left(5 - 5.2'\right)^2}{5.2'} + \frac{\left(4 - 8.5'\right)^2}{8.5'} + 9.71$	M1 M1
	= 12.10	. awrt 12.0 to 12.1	A1
	$\nu = 7$		B1
	$\chi_7^2(0.05)$	= 14.067	B1ft
		e CR/not significant/Do not reject H ₀] There is not sufficient evidence to suggest that [6] is not a suitable model/The model is suitable/The data are consistent with the	A1
			(7)
(c)	v = 8 - 3	= 5 / two parameters estimated so additional degrees of freedom subtracted	M1
	Therefore	e the critical value is reduced/now 11.070	A1
			†
		Notos	(2)
(a)	M1	Notes for standardising with 303.5 or 315.5, 310 and 4	(2) Total 14
(a)	M1 A1	Notes for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085	
(a)		for standardising with 303.5 or 315.5, 310 and 4	
(a)	A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085	
(a)	A1 A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value	
	A1 A1 M1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values	Total 14
(a) (b)	A1 A1 M1 A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{(5-'5.2')^2}{'5.2'}$ or $\frac{(4-'8.5')^2}{'8.5'}$	Total 14
	A1 A1 M1 A1 B1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{(5-'5.2')^2}{'5.2'}$ or $\frac{(4-'8.5')^2}{'8.5'}$ for a complete method to find $\sum \frac{(O-E)^2}{E}$ e.g. 9.71 + 2 additional terms	Total 14
	A1 A1 M1 A1 B1 M1 M1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1	Total 14
	A1 A1 M1 A1 B1 M1 A1 A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{(5-'5.2')^2}{'5.2'}$ or $\frac{(4-'8.5')^2}{'8.5'}$ for a complete method to find $\sum \frac{(O-E)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1	Total 14
	A1 A1 M1 A1 B1 M1 A1 B1 B1 B1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067	Total 14
	A1 A1 M1 A1 B1 M1 A1 A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{(5-'5.2')^2}{'5.2'}$ or $\frac{(4-'8.5')^2}{'8.5'}$ for a complete method to find $\sum \frac{(O-E)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v=7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592)	Total 14
	A1 A1 M1 A1 B1 M1 A1 B1 B1 B1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2^{nd} M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value.	Total 14
(b)	A1 A1 M1 A1 B1 M1 A1 B1 A1 A1 A1 A1 A1 A1 A1 A1	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2^{nd} M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value. If no hypotheses or hypotheses wrong way round do not award.	Total 14
	A1 A1 M1 A1 B1 M1 A1 B1 B1 B1ft	for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2^{nd} M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value.	Total 14