Question Number		Scheme							
1.	$H_0: \mu =$	$= 30 H_{1:} \mu < 30$							
	$z = \frac{29}{2}$	$z = \frac{29.5 - 30}{\frac{2.5}{\sqrt{80}}}$							
	z = -1.	awrt–1.79							
	-1.788	1.7888 < -1.6449							
	Reject	t H_0 or significant result or in the critical region							
	There	s is evidence to support the manager's claim.							
		Notes							
	B1	Both hypotheses correct in terms of μ							
	M1	for attempting test statistic, allow \pm , Condone $\sqrt{\frac{2.5}{80}}$							
	A1	awrt -1.79 allow $ z = 1.7888$ Allow <i>p</i> value of 0.0367 or awrt 0.0368 or CR ≤ 29.5							
	B1	$ CV = 1.6449$ or better (Ignore any comparisons) Allow $CR \le 29.54$ SC If <i>p</i> value of 0.0367 or awrt 0.0368 award B1 if 2 nd A1 is awarded							
	A1	For correct conclusion. Allow the manager's claim in words if i	t includes screws and less	s (oe)					

Question Number	Scheme								
2	H ₀ : Potassium has no effect on the quality of apple								
2	H ₁ : Potassium has an effect on the quality of apple								
	Grade A B C D E								
	Expected	d 9.6 67.2 124.8 24.0 14.4	M1A1						
	values								
		$(z - z)^2$ $(z - z)^2$							
	$\chi^2 = \sum$	$\frac{(O-E)^{-}}{(O-E)^{-}} = \frac{(9-"9.6")^{-}}{(3-"14.4")^{2}}$ or							
		<i>E</i> "9.6" "14.4"	M1						
	$u^2 - \Sigma$	$O^2 = \frac{9^2}{10^2} + \frac{3^2}{10^2} = \frac{340}{10^2}$							
	$\chi = \sum_{i=1}^{n}$	$\frac{1}{E} - N = \frac{1}{9.6"} + \dots + \frac{1}{14.4"} - 240$							
	= 10.	657 awrt 10.7	A1						
	Degrees of	of freedom = 4	B1						
	$\chi^2_{4,0.05} = 9.488$								
	[Reject H	0] Data suggests that potassium may affect the distribution	A1ft						
	of the gra	des of apples or there is evidence that Andy's belief is							
	incorrect		(8)						
		Notes	Total 8						
	B1	Both hypotheses in context. May use other wording eg The grading of apples remain	s the same.						
	M1 A correct method to calculate expected values eg 0.04×240								
	A1	At least 3 expected values correct							
		2							
	M1	A correct method using their expected values to calculate χ^2 At least one correct, ft	their						
	M1	A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add	their						
	M1 A1	A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add awrt 10.7	their						
	M1 A1 B1	A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add awrt 10.7 Degrees of freedom = 4 (may by be implied by 9.488)	their						
	M1 A1 B1 B1ft	A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add awrt 10.7 Degrees of freedom = 4 (may by be implied by 9.488) 9.488 ft their DoF. If no DoF stated then this must be correct for their working.	their						
	M1 A1 B1 B1ft	A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add awrt 10.7 Degrees of freedom = 4 (may by be implied by 9.488) 9.488 ft their DoF. If no DoF stated then this must be correct for their working.	their						

Question Number	Scheme									Ma	rks		
3(a)	iam	A	В	C	D	Ε	F	G	Н	Ι			
	Price	e 1	2	4	5	3	6	7	8	9		M1	
	Taste	: 1	2	8	9	4	3	6	5	7			
	$\sum d^2 = [0+0+]16+16+1+9+1+9+4[=56]$											M1A	1
	$r_s = 1 - \frac{6(56)}{9(80)}; = \frac{8}{15} = 0.5333$ awrt 0.533										dM1A	41	
													(5)
(b)	$H_0: \rho = 0, \ H_1: \rho \neq 0$									B1			
	Critical V	alue $= 0.$	7									B1	
	There is no evidence of a relationship between <u>price</u> and <u>taste</u> of strawberry jam										B1ft		
		1 < 10.4	2										(3)
(C)	$r = \frac{1}{\sqrt{20}}$	16.494	3 5556									M1	
	$\sqrt{2.0433 \times 243.3330}$										Δ1		
	- 0.750	/									awit 0.757		(2)
(d)	$H_0: \rho = 0$	$H_1: \rho$	0 > 0									B1	
	CV = 0.58	322										B1	
	There is evidence of a positive correlation between price and taste of strawberry jam									B1ft			
													(3)
(e)	Spearman	's rank ikoly the	to joint	normal	dictribu	tion on	lios					B1	
	or the mar	ks are a	udgeme	nt or the	e marks	are not	a mean	ingful so	cale.				
	of the marks are a judgement of the marks are not a meaningful scale.									(1)			
							Notes	5				Tot	al 14
(a)	M1	Attemp	t to rank	each ja	r for tas	te and p	rice. At	t least 4	pairs of	f ranks c	correct		
	M1	For an a	attempt a	at d^2 row	w for the	eir ranks	s (may	be impli	ed by	$\sum d^2 = 3$	56)		
	A1	A1 $\sum d^2 = 56$											
	dM1	dM1 Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{\alpha(\alpha)}$											
		8)(00)			
	A1	$\frac{0}{15}$ or a	wrt 0.53	33									
(b)	B1	Both hy	potheses	s stated	in terms	s of ρ .	Must b	e two- t	ail.				
	B1	0.7 for	CV. Allo	ow 0.6 if	f a one t	ail test i	s used						
	B1ft	For a co	orrect co	ntextual	ised cor	nment v	which h	as price	and tas	te			
		Follow	through	their r_s	with th	eir 0.7 (provide	ed their	$ r_s < 1$	1)			
(c)	M1	Correct	method	used									
(d)	AI	awrt 0.	139 mothese	e etatad	in term	of a	Must h	e one-te	il If RO) awarda	d in nart (b) the	n allou	v anv
(u)	B1	letter in	stead of	ρ that	is consi	stent wi	th part	(b)				anow	any
	B1	0.5822	Allow 0.	, .6664 if	a two-ta	ail test i	s used.	. /					
	B1ft	Correct	conclus	ion in co	ontext w	hich ha	s positi	ve corre	lation (this may	y be implied by 0.5822 and	a corre	ct
	Di	Selectin	ion of point point point in the second se	ositive c man's w	ith a sui	on), pric	e and t ason. D	aste. Fo o not al	low the	cough the cause it	tis ranked' as a (1.5822) and	0.739 suitable	e
(e)	RI	reason			-	-							

Question Number	Scheme							
4(a)	Label the houses in area A 1- 41, area B 1 – 164, area C 1 – 123 and area D 1 - 82							
	Use random numbers to select a							
	Simple random sample of <u>20</u> area <u>A</u> , <u>80</u> area <u>B</u> , <u>60</u> area <u>C</u> and <u>40</u> area <u>D</u>							
(b)	$\frac{357 \times 260}{595}$	$\frac{357 \times 260}{595}$ or $\frac{238 \times 260}{595}$						
	156 and 104							
				(2)				
(c)								
	Observe	d Expected	$\frac{\left(O-E\right)^2}{E}$					
	162	"156"	$\frac{\left(162 - "156"\right)^2}{"156"} = \frac{3}{13} = 0.2307$	M1				
	98	"104"	$\frac{\left(98 - "104"\right)^2}{"104"} = \frac{9}{26} = 0.3461$					
		1						
	$\chi^2 = 4.65$	7 +"0.2307"	+"0.346"	M1				
	= 5.23	4	awrt 5.23	A1				
	v = (2 - 1)	(3-1) = 2		B1				
	$\gamma^{2}(0.05)$	$= 5.991 \implies CR$:	$\chi^2 > 5.991$	B1ft				
	λ_2 (0.03) = 0.001 \rightarrow CR. λ > 0.001 There is no evidence to suggest that there is an association between age and listoning to <i>I</i> CD.							
	There is no evidence to suggest that there is an association between <u>age</u> and <u>instelling</u> to LSB							
			Notes	Total 11				
(a)	M1	For suitable lab	belling of all four areas. E.g. for area A: $1 - 41$ or $0 - 40$					
	M1	For use of rand	lom numbers to select houses in each area.					
	A1	For 20 A, 80B,	, 60C and 40 D (dependent on 2 nd M1 only)					
		NB A simple r	andom sample of 20 A, 80B, 60C and 40 D scores M0M1A1.					
		Allow M1	: allocate random numbers to each house					
		M1	: arrange the numbers in order	D				
		Al	: select the I^{α} 20 for area <u>A</u> , <u>80 for</u> area <u>B</u> , <u>60</u> for area <u>C</u> and <u>40</u> for a	irea <u>D</u>				
(b)	M1 A1	 SC If M0M0 scored then award B1 for <u>20</u> area <u>A</u>, <u>80</u> area <u>B</u>, <u>60</u> area <u>C</u> and <u>40</u> area <u>D</u> M1 A correct method for finding one expected value. A1 Correct answer for both values. 						
(c)	M1 A correct method for finding both contributions to the χ^2 value							
	M1		χ value χ (57 (see by including to the χ value (10 km s) is the χ value (10 km s)					
		Adding the two	5 values to 4.657 (may be implied by a full χ calculation, do not is v	V)				
	AI B1	awrt 5.23						
	B1ft	$\stackrel{\scriptstyle \angle}{5.991}$ or better	ft their DoF					
	344	A correct conte	extual conclusion, which has the words age and listening dependent or	ı both M				
	đAI	marks being av	varded.					
	NB if they give a p value of 0.0730 rather than the CV they can get M1M1B1B0A1							

Question Number		Scheme	Marks				
5(a)	$2.977 \pm 2.5758 \times \frac{0.015}{3}$						
	= (2.9641, 2.9898) awrt (2.964, 2.990)						
			(2)				
(b)	The CI do	es not contain the stated weight.	B1				
(0)			(1)				
(c)	2.995-1	$2.995 - 1.96 \times \frac{0.015}{\sqrt{n}} < 2.991$					
	$\sqrt{n} < \frac{1.96 \times 0.015}{2.995 - 2.991}$						
	$\sqrt{n} < awa$	rt 7.35	A1				
	<i>n</i> = 54						
(a) (b) (c)	M1 B1 A1 B1 M1 M1d A1 A1cao	$2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$ awrt 2.5758 awrt (2.964, 2.990 (condone 2.99)) cao this must be consistent with their confidence interval Setting up an inequality using z value > 1.5 Condone = Dep on previous M mark. Correct rearranging to get $\sqrt{n} < \dots$ or $n < \dots$ Condone = 0 awrt 7.35 may be implied by awrt 54 54	<u>)</u> r >				

Question Number		Scheme	Marks			
6(a)	$\overline{h} = 65.4$					
	$_{2}$ 214676 – 50 × ("65.4") ²					
	$s^2 =$					
	=16.693 awrt 16.7					
(b)	$H_0:\mu_{do} = \mu$	$\mu_{\rm do \ not} \ {\rm H_1}$: $\mu_{\rm do} < \mu_{\rm do \ not}$	B1			
	7 = +	"65.4"-70.8				
	~ – "	16.693" 29.6	M1M1			
		$\frac{1}{50} + \frac{1}{40}$				
	$= \pm 5.2$	1 awrt 5.21	A1			
	CV 1.644	9	B1			
	Amala's <u>b</u>	belief is supported	A1 ft			
			(6)			
(c)	CLT enab	bles you to assume that (the sampling distribution of the sample mean of) resting	B1			
	neart rate	is normally distributed for <u>both</u> groups	(1)			
(d)	Each pop	ulation/sample is independent or each male is independent of the other males.	B1			
	Assume th	he $\sigma_{1}^{2} = s_{1}^{2}$ and $\sigma_{2}^{2} = s_{2}^{2}$	B1			
	rissume die o do not – b do not – b do not					
		Notes	Total 12			
(a)	B1	65.4 only	1000112			
	M1	Correct method to find s^2 using their \overline{h}				
	A1	awrt 167				
(b)	B1	Both hypotheses correct - must be clear which is exercise and which is not				
	M1	For the denominator. Ft their 16.693				
	M1	Correct ft their 65.4 and 16.693				
	A1	awrt 5.21 allow $ z = 5.21$				
	B1	CV = 1.6449 or better	•			
	A 1	It their z value and CV if the hypotheses are the correct way round. Correct conclusing heart heart and heart and heart and heart and heart and heart	on in context			
	AI	exercise regularly				
(c)	B 1	For the idea both groups normally distributed				
(d)	B1	For identifying the need for the groups or males to be independent.				
	D 1	Realising the $\sigma^2 = s^2$				
	DI	Allow sample sizes big enough for CLT to hold				

Question Number		Scheme	Marks				
7(a)	$\mathbf{E}(B_1 - B_2) = 0$						
	$Var(B_1 - B_2) = 0.006$						
	$P(B_1 -$	$ B_2 > 0.1) = 2P(B_1 - B_2 > 0.1)$	M1				
		$= 2 \times P\left(Z > \frac{0.1}{\sqrt{0.006''}}\right) \left[= 2 \times P(Z > 1.2909)\right]$	M1				
		= 0.1967 awrt 0.197	A1				
		(0.003)	(5)				
(b)	$\overline{B} \sim N$	$\left(1.96, \frac{0.005}{n}\right)$	B1				
	$P(\overline{B} >$	$2) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01]$	M1				
	$\frac{2-1.9}{\sqrt{\frac{0.000}{n}}}$	$\frac{6}{3} > 2.3263$	B1 dM1				
	<i>n</i> = 11		A1 (5)				
(c)	$\mu_M = 2$	$21.8+500\times1.96[=1001.8]; \sigma_M^2 = 0.6+500\times0.003[=2.1]$	M1 ; M1				
	Let $X =$	4 <i>T</i> – 3 <i>M</i>	M1				
	$\mu_{X} = 4$	$\times 774 - 3 \times "1001.8" [= 90.6]; \sigma_{\chi}^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$	M1 ; M1				
	P(4T -	$-3M > 100 = P\left(Z > \frac{100 - "90.6"}{\sqrt{"47.7"}}\right) \left[= P(Z > 1.361)\right]$	M1				
		= 0.0869 (table) or 0.08675 (calc)	A1				
			(7) Total 17				
(a)	B1	For expected value being 0 written or used	10(4117				
	B1 M1	For 0.006 being written or used for Variance Realising they need to consider both					
	M1	Correct standardisation using their 0.1 and 0.006 If the expected value and/or standard	1 deviation				
	A1	not stated then they must be correct awrt 0.197					
(b)	B1	The correct distribution written or used					
	M1	Correct standardisation. Allow using their distribution if stated but must contain \sqrt{n} for	or sd				
	B1 dM1	Using awrt 2.3263 Dep on previous M being awarded using a z value $2 \le z \le 3$					
	A1	11					
(c)	M1 M1	Correct method for finding the mean of M Correct method for finding the var of M					
	M1	Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$					
	M1 M1	Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M$) Correct method for finding the var of X	-4T = 9.4)				
	M1	Correct standardisation using their mean of X and their standard deviation of X If these	e are not				
	A1	stated then they must be correct awrt 0.0869 or 0.0868					