Question Number		Scheme	Mai	rks
1(a)	[F(1) = 1]	so] $k(6 \times 1^2 - 1^4) = 1$ leading to $k = \frac{1}{5}$ *	B1*	
				(1)
(b)	[1 - F(0.	6) =] $1 - \frac{1}{5} (6 \times 0.6^2 - 0.6^4)$	M1	
	= 0.5939	2 awrt 0.594	A1	
				(2)
(c)(i)	$\frac{1}{5}(6m^2-$	$-m^4$) = $\frac{1}{2}$	M1	
	$2m^4-12$	$2m^2 + 5 = 0 \text{oe}$	A1	
(ii)	m = 0.67	'11 awrt 0.671	A1	
				(3)
(d)		$\left(x^{2} - \frac{1}{5}x^{4}\right) = \left[\frac{12}{5}x - \frac{4}{5}x^{3}\right]$	M1	
	$\int \frac{d}{dx} \left(\frac{12}{5} \right)$	$\left(x - \frac{4}{5}x^3\right) = \left[\frac{12}{5} - \frac{12}{5}x^2\right] = 0$	M1	
	x=1	· /] · ·	A1	
	<i>N</i> – 1		711	(3)
(e)	Mean <	"Median" < "Mode"	M1	(-)
` '	So negat	ive [skew]	A1ft	
				(2)
		Notes	Tota	<u>l 11</u>
(a)	B1*	for use of $F(1) = 1$ leading to the given answer (minimum required is $k(6-1) = 1$) Allow use of $F(1) - F(0) = 1$ e.g. $k(6-1) - k(0-0) = 1$ The answer is given so no incorrect working can be seen		
(b)	M1	for using 1 – F(0.6) May be implied by $1 - \frac{1269}{3125}$ or $\frac{1856}{3125}$		
	A1	awrt 0.594 Allow $\frac{1856}{3125}$		
(c)(i)	M1	for setting $F(m) = 0.5$ Allow any letter (including x)		
() ()	A1	for a correct 3TQ oe NB the values of a , b and c must be integers		
(ii)	A1	awrt 0.671 Allow $\sqrt{\frac{6-\sqrt{26}}{2}}$ (must reject other roots if seen)		
		NB It is possible to score M1A0A1		
(d)	M1	for differentiating $F(x)$ with at least one $x^n \to x^{n-1}$ May be left in terms of k eg. $k(1)$ Condone missing k		
	M1	for differentiating twice with at least one $x^n \to x^{n-1}$ and setting = 0 oe May be left if eg. $k(12-12x^2)=0$ Condone missing k	in terms	of k
	A1	Cao (Must reject $x = -1$ if seen)		
(e)	M1	a correct justification using the Mean and their Median and/or their Mode. This mus for their values Allow use of figures e.g. $0.64 < 0.671 < 1$ Allow comparisons o and "mode" on its own. Comparison with 0.5 is M0 unless 0.5 is their median or mode		
	A1ft	a correct conclusion based on their comparison (Do not allow a conclusion that is no supported by their comparison)	ot fully	

Question Number		Scheme	Marks		
2(a)	Poisson	with $\lambda = 10$	B1		
			(1)		
(b)	Custom	ers [enter the shop] singly/randomly/independently/at a constant rate	B1		
	4	WAR TT A WAR	(1)		
(c)	$H_0: \lambda =$	"10" $H_1: \lambda \neq$ "10"	B1ft		
	_		(1)		
(d)	$[P(X_{1}, 2) =]$ awrt 0.0103 $[P(X_{1}, 2) =]$ awrt 0.0293				
	[P(X1	[P(X18) =] awrt 0.0270 $[P(X18) =]$ awrt 0.0143	M1		
	X., 30	X18 oe	A1		
			(3)		
(e)	0.0103 +	0.0143 = 0.0246	M1		
	So 2.469	%	A1ft		
			(2)		
(f)		ot in the CR/Do not reject H ₀ /Not significant	M1		
	There is insufficient evidence to suggest that the rate/number/amount of customers entering the shop has changed /[is] different oe				
			(2)		
	- 1	Notes	Total 10		
(a)	B1	for Poisson/Po and $\lambda = 10$	•		
(b)	B1	for a correct assumption (must have context of customers/people) Ignore irrelevant of statements			
(c)	B1ft	B1ft both hypotheses correct. Must be correctly attached to H_0 and H_1 in terms of λ or μ ft part a Allow $H_0: \lambda = 20$ $H_1: \lambda \neq 20$			
(d)	for use of Po(10) to find the lower critical value. May be implied by awrt 0.0103 or awrt 0.0293 or a correct lower critical region (These must be seen in part (d))				
	M1	for use of Po(10) to find the upper critical value. May be implied by awrt 0.027 or awrt 0.973 or awrt 0.9857 or a correct upper critical region (These must be seen in page 1).			
	for a correct critical region oe e.g. $X < 4$ and $X > 17$ Allow $0 \le x \le 3$ and $18 \le x \le 20$ or $\{0, 1, 2, 3\}$ $\{18, 19,\}$ Condone use of () or [] for $\{\}$ Do not allow if written as probability statements Allow any letter. Accept $CR \le 3$ $CR \ge 18$				
(e)	M1 for adding the probabilities for the 2 tails of their CR together May be implied by a correct answer				
	A1ft	awrt 0.0246 or ft their CR			
(f)	M1	dependent on having found a 2 tailed CR in part (d) for a correct statement (ft their 2 – no context needed but do not allow contradicting non contextual comments. May a correct contextual statement on its own. We ignore any comparison of numbers/pre-	be implied by		
	A1ft	correct conclusion in context (ft their 2 tailed CR). Must contain the words in bold on No hypotheses in part (c) then A0 Allow equivalent statements e.g. The mean rate he changed/still 10			

Question Number		Scheme	Marks
3(a)	np = 3 and $np(1-p) = 2.55$		
	p = 0.15	oe $n = 20$	A1 A1
			(3)
(b)	[B(40, 0.	2) so] $E(X) = 8$	B1
	P(X > 8)	$(3) =]1 - P(X_{*}, 8)$	M1
	= 0.4069	Cale: 0.40687 awrt 0.407	A1
			(3)
(c)(i)	$[Po(n \times p)]$	P(x) = P(x)	M1
	P(X1	$2) =]1 - P(X_{,,} 11)$	M1
	= 0.1119	Calc: 0.11192 awrt 0.112	A1
(ii)	because i	n is large and p is small	B1
			(4)
		Notes	Total 10
()		$ f_{-1} _{1} + f_{-1} _{$	
(a)	M1	for both $np = 3$ and $np(1-p) = 2.55$ Allow q to imply $1-p$	
(a)	A1	either $p = 0.15$ oe or $n = 20$	
(a)		either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$	O)
(a) (b)	A1	either $p = 0.15$ oe or $n = 20$	⟨ ≤ 8) or
	A1 A1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X > 8)$	⟨ ≤ 8) or
	A1 A1 B1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$	⟨ ≤ 8) or
	A1 A1 B1 M1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$ for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using $P(8)$ May be implied by awrt 0.112 or 0.888	⟨ ≤ 8) or
(b)	A1 A1 B1 M1 A1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$ for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3	\(\le 8 \) or
(b)	A1 A1 B1 M1 A1 M1 M1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$ for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using $P(8)$ May be implied by awrt 0.112 or 0.888 for writing or using $1 - P(X, 11)$ awrt 0.112 (NB exact binomial gives awrt 0.1004 and would score M0M1A0)	X ≤ 8) or
(b)	A1 A1 B1 M1 A1 M1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$ for writing or using $1 - P(X = 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using $P(X = 8)$ May be implied by awrt 0.112 or 0.888 for writing or using $P(X = 8)$ for writing or using $P(X = 8)$ awrt 0.112 or 0.888 for writing or using $P(X = 8)$ awrt 0.112 or 0.888 for writing or using $P(X = 8)$ awrt 0.112 or 0.888 for writing or using $P(X = 8)$ awrt 0.112 or 0.888	
(b)	A1 A1 B1 M1 A1 M1 M1	either $p = 0.15$ oe or $n = 20$ both $p = 0.15$ oe and $n = 20$ for $E(X) = 8$ Condone $\mu/np = 8$ May be implied by $40 \times 0.2 = 8$ or $P(X > 8)$ or $1 - P(X = 8)$ for writing or using $1 - P(X, 8)$ awrt 0.407 NB cao scores 3 out of 3 for writing or using $P(8)$ May be implied by awrt 0.112 or 0.888 for writing or using $1 - P(X, 11)$ awrt 0.112 (NB exact binomial gives awrt 0.1004 and would score M0M1A0)	

Question Number		;	Scheme			Mar	ks
4(a)	3, 6, 9, 12					B1	
	$[P(black)=]\frac{2}{7}$ and $[P(white)=]\frac{5}{7}$					В1	
		$= \left \left(\frac{5}{7} \right)^3 \right \text{ or } \left[P(X) \right]$	$=12)=\left]\left(\frac{2}{7}\right)^3$			M1	
	P(X=6)	$(5) = 3 \times \left(\frac{5}{7}\right)^2 \times \frac{2}{7}$				M1	
	P(X=9)	$(1) = 3 \times \frac{5}{7} \times \left(\frac{2}{7}\right)^2$				M1	
	X	3	6	9	12		
	P(X = x)		150 343	60 343	8 343	A1	
		(0.3644)	(0.4373)	(0.1749)	(0.0233)		(6)
(b)	$\left(\frac{283}{343} \right)^n < 0.05$ oe					M1	(0)
	$n > 15.57$ or $n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$ or $n > \log_{\left(\frac{283}{343}\right)}(0.05)$					dM1	
	n = 16					A1	
	N-4						(3)
(a)	B1	for all 4 possible ou	Not			Tota	11 9
	B1	for writing or using or $P(X = 3)$ and $P(X = 3)$	$\frac{5}{7}$ and $\frac{2}{7}$. May	be implied by a co		or $P(X = 6)$ or $P(X =$	= 9)
	M1					rt 0.023	
	M1	for p^3 where $0 May be implied by \frac{125}{343} or awrt 0.364 or \frac{8}{343} or awrt 0.023 for 3 \times p^2 \times (1-p) where 0 May be implied by \frac{150}{343} or awrt 0.437 or \frac{60}{343} or awr$					5
	M1	for $3 \times n \times (1-n)^2$ where $0 < n < 1$ May be implied by $\frac{150}{n}$ or awrt 0.437 and $\frac{60}{n}$ or awrt 0.1					
	A1	for all 4 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total. If decimals are used then they must be awrt 0.364, awrt 0.437, awrt 0.175 and awrt 0.023					Į.
(b)	M1	for $\left(1 - \frac{60}{343}\right)^n < 0.05$ oe Condone =/ \leqslant instead of <					
	dM1	Dependent on the property for $n > \text{awrt } 15.6 \text{ or}$ the two trials between	$n > \frac{\log(0.05)}{\log\left(\frac{283}{343}\right)}$ en $n = 15$ and 16		$e > \log_{\left(\frac{n^2 83}{343}\right)}(0.05)$	of ft their $\frac{283}{343}$ or for	or
	A1	Allow = instead of cao (do not allow ar		:			
<u> </u>	1 484	the (as not anow at	· ····································				

Question			N 1		N/ 1	
Number			Scheme		Marks	
5(a)	$\frac{2}{21} \int_0^k x \mathrm{d}x$ $\frac{2}{15} \int_k^6 (6 - \frac{1}{2})^4 \mathrm{d}x$		$\frac{1}{2}(k-0) \times \frac{2}{21}k \text{ and}$ $\frac{1}{2}(6-k) \times \frac{2}{15}(6-k)$	For 0,, x ,, k $F(x) = \frac{1}{21}x^2$	M1	
	$\frac{2}{21} \left[\frac{x^2}{2} \right]_0^k$ $\frac{2}{15} \left[6x - \frac{1}{2} \right]_0^k$	$+\frac{x^2}{2} \bigg]_k^6 \left[=1 \right]$	$\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{15}(6-k) = 1$	For $k < x$,, 6 $F(x) = \frac{2}{15} \left(6x - \frac{x^2}{2} \right) - \frac{7}{5} \text{ oe}$	M1	
	$\frac{1}{21}k^2 + \frac{2}{15}\left(18 - \left(\frac{1}{15}\right)^2\right)$	$\left(6k - \frac{k^2}{2}\right) \left[=1\right]$	$\frac{1}{21}k^{2} + $ oe $\frac{1}{15} (36 - 12k + k^{2}) [=1]$	$\frac{1}{21}x^2 = \frac{2}{15}\left(6x - \frac{x^2}{2}\right) - \frac{7}{5}$	dM1	
			$4k^2 - 28k + 49 = 0 \text{ oe}$		dM1	
	e.g. $(2k-7)^2 = 0$ leading to $k = 3.5 *$					
(b)	$E(X) = \frac{1}{2}$	$\frac{2}{21} \int_0^{3.5} x^2 \mathrm{d}x + \frac{2}{15} \int_{3.5}^6 ($	$6x-x^2$) dx		M1	
	$\left[\frac{2}{21} \left[\frac{x^3}{3} \right]_0^{3.5} + \frac{2}{15} \left[3x^2 - \frac{x^3}{3} \right]_{3.5}^6 \right]$					
	$\frac{2}{21} \left(\frac{343}{24} \right)$	$+\frac{2}{15}\left(36-\left(\frac{147}{4}-\frac{3}{4}\right)\right)$		dM1A1		
(c)	$Var(X) = \frac{277}{24} - \left\ \left(\frac{19}{6} \right) \right\ ^2 = \frac{109}{72}$					
	Notor					
	NotesTotal 11for writing/using the integral of $f(x)$ and setting = 1 ignore limits					
(a)	or both areas identified (these do not need to be added nor set = 1) or a correct expression for $F(x)$ between $0 \le x \le k$					
	M1	for an attempt at integration on either part with $x^n \to x^{n+1}$ ignore limits or adding the area of the 2 triangles and set = 1				
	or a correct expression for $F(x)$ between $k \le x \le 6$ dependent on 1 st M1 for substitution of k , 0 and 6 into the integral of $f(x)$					
	dependent on 1° M1 for substitution of k , 0 and 6 into the integral of $I(x)$ or an un-simplified 3TQ quadratic or setting the 2 parts of $F(x)$ equal to each other					
	dM1		us M1 for a correct 3TQ equal t	o 0 e.g. $\frac{4}{25}k^2 - \frac{12}{15}k + \frac{7}{5} = 0$ oe		
	A1*					
	A1* for solving the 3TQ leading to the given answer (Working must be shown)					

	NB :	Solution based on the assumption that $\frac{2}{21}k = \frac{2}{15}(6-k)$ scores M0M0dM0dM0A0
	e	e.g. $\frac{2}{21}k = \frac{2}{15}(6-k)$ or $\frac{1}{2} \times 6 \times \frac{2}{21}k = 1$ or $\frac{1}{2}(k-0) \times \frac{2}{21}k + \frac{1}{2}(6-k) \times \frac{2}{21}k = 1$
		Use of verification can score M1M1dM0dM0A0
	e.g. $\frac{2}{21}$	$\left[\frac{x^2}{2}\right]_0^{3.5} + \frac{2}{15}\left[6x - \frac{x^2}{2}\right]_{3.5}^{6} \left[=1\right] \text{ or } \frac{1}{2}(3.5 - 0) \times \frac{2}{21}(3.5) + \frac{1}{2}(6 - 3.5) \times \frac{2}{15}(6 - 3.5) = 1$
(b)	M1	for writing or using the integral of $xf(x)$ ignore limits but must be both parts
	dM1	dependent on 1 st M1 for an attempt at integration on both parts with $x^n \to x^{n+1}$ ignore limits
	13.54	dependent on previous M1 for substitution of 3.5, 0 and 6
	dM1	$(\frac{49}{36} \text{ and } \frac{65}{36} \text{ is the minimum required to imply this mark})$
	A1	allow awrt 3.17
(c)	M1	for use of $E(X^2) - E(X)^2$ ft their $E(X)$
	A1	allow awrt 1.51

Question Number		Scheme	Marks
6(a)	$\frac{5-2}{b-a} = \frac{1}{1}$ oe	$\frac{3}{16}$ oe or $1 - \left(\frac{2-a}{b-a} + \frac{b-5}{b-a}\right) = \frac{3}{16}$ $\frac{5-a}{b-a} = \frac{3}{16}$ oe	M1
		$\frac{a+b}{2} = 6 \text{ oe}$	M1
	a = -2 a	and $b = 14$ $a = 4.4$ and $b = 7.6$	A1 (3)
(b)		$[cE(X)+1=3 \Longrightarrow] 6c+1=3$	M1
		$c = \frac{1}{3}$	A1
	_		(2)
(c)	VarX =	$= \frac{(b-a)^2}{12} = \left \frac{64}{3} \text{ oe} \right \left[\text{Var} X = \frac{(b-a)^2}{12} = \left \frac{64}{75} \text{ oe} \right \right]$	B1ft
			(1)
(d)	$E(X^2) =$	$= "\left(\frac{64}{3}\right)" + 6^2 = \frac{172}{3} \text{ or } \qquad E(X^2) = "\left(\frac{64}{75}\right)" + 6^2 = \frac{2764}{75}$	M1A1
			(2)
(e)	$P\left(\frac{3}{2}X - \frac{3}{2}X\right)$	$-b > a$ $\Rightarrow P(X > 8) = \frac{3}{8}$ $P\left(\frac{3}{2}X - b > a\right) \Rightarrow P(X > 8) = 0$	M1A1
			(2)
		Notes	Total 10
(a)	M1	for using $P(2 < X < 5) = \frac{3}{16}$ or $P(a < X < 5) = \frac{3}{16}$ to form a correct equation in a and	b
	1,11	May be implied by $b - a = 16$	
	M1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$	
		for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$	2
(b)	M1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^n}^{14^n} \frac{1}{16^n} x dx + 1 [=$	2
(b)	M1 A1 M1	for using E(X) = 6 to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{-}}^{14^{-}} \frac{1}{16^{-}} x dx + 1 [= May be implied by c = \frac{1}{3}$	2
	M1 A1 M1 A1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x dx + 1 [= May be implied by c = \frac{1}{3} Cao$	2
(b)	M1 A1 M1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^n}^{-14^n} \frac{1}{16^n} x dx + 1 [= May be implied by c = \frac{1}{3} Cao ft their a and b Allow decimal answers correct to 3sf e.g 21.3$	2
	M1 A1 M1 A1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x dx + 1 [= May be implied by c = \frac{1}{3} Cao$	2
(c)	M1 A1 M1 A1 B1ft	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x dx + 1 \Big[= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	= 3]
(c)	M1 A1 M1 A1 B1ft M1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{n}}^{14^{n}} \frac{1}{16^{n}} x dx + 1 [= May be implied by c = \frac{1}{3} Cao ft their a and b Allow decimal answers correct to 3sf e.g 21.3 for use of Var(X) + E(X)^2 ft their Var(X) or a fully correct integration seen$	2 = 3] used
(c) (d)	M1 A1 M1 A1 B1ft A1 A1	for using $E(X) = 6$ to form a correct equation in a and b May be implied by $a + b = 1$ for $a = -2$ and $b = 14$ or $a = 4.4$ and $b = 7.6$ for use of $cE(X) + 1 = 3$ or fully correct integration seen e.g. $c \int_{-2^{-}}^{-14^{-}} \frac{1}{16^{-}} x dx + 1 \Big[= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	2 = 3] used

Question Number		Scheme	Mai	rks		
7(a)	$X \sim B(40, 0.3)$					
(b)	Constant	t probability of buying insurance or Customers buy insurance independently	B1	(1)		
(0)				(1)		
(c)	[P(X '	$7) = P(X < 8) = 0.0553 [P(X_{,,} 6) = P(X < 7) = 0.0238]$	M1	(1)		
(C)	_	7) - I (A < 0) -] 0.0333 [I (A ,, 0) - I (A < 7) -] 0.0230				
	So $r = 7$		A1	(2)		
(d)	B(200_0	0.3) implies N(60, 42)	M1	(2)		
(u)				: 1		
	1-0.5-	$\frac{"60"}{2"} = -1.62 \text{ or } \frac{"60"-t+0.5}{\sqrt{"42"}} = 1.62$	M1M	.1		
			B1			
	t = 50.0	01 so] t = 50	A1			
				(5)		
(e)	$H_0: p =$	$0.3 ext{ } H_1: p > 0.3$	B1			
	[P(X1	$[1] = [1 - P(X_{,,} 10)]$	M1			
	= 0.0978	3 or CR ≥ 11	A1			
		Io/Significant/In CR	M1			
		e to suggest that percentage/proportion/probability/number/amount of	A1ft			
	customers who buy insurance has increased oe					
				(5)		
		Notes	Tota	<u>l 14</u>		
(a)	B1	Allow Binomial $n = 40 p = 0.3$				
(b)	B 1	for a suitable assumption in context. Must include 'insurance' If multiple reasons give	en igno	re		
(c)	M1	any irrelevant or incorrect reasons provided, they are non-contradictory for either probability. May be implied by $r = 7$				
(c)	A1	Cao				
	for writing or using N(60, 42) May be seen in a standardisation. If N(60, $\sqrt{42}$) writte					
(d)	M1 and $\sqrt{42}$ used in a standardisation then award M1					
	M1	for standardising using t or $t - 0.5$ or $t + 0.5$ with their mean and their standard deviations.	ation			
	M1	Č Č				
	B1	for ± 1.62 or better (calc: 1.620150314) seen or used.				
		Must be compatible with their standardisation				
()	A1	Cao Do not allow $t = 50$ from incorrect working				
(e)	B1	for both hypotheses in terms of p or π				
	M1	for writing or using $1-P(X_1, 10)$ May be implied by a correct CR				
	A1	for 0.0978 or correct CR for a correct non contextual conclusion. ft their probability/CR provided a binomial	diataibast	:		
	M1	is used. Do not allow contradictory statements. May be implied by a correct contextual contradictory statements.				
	1411	on its own.	iai statei	пспс		
	A 1 F4	a correct contextual statement with words in bold (Allow equivalent statements) ft th	eir			
	A1ft	probability/CR provided a binomial distribution is used				
		If a two tailed test is used, then it is possible to score B0M1A1M1A1				
		$H_0: p = 0.3$ $H_1: p \neq 0.3$ B0				
	[D(V 11)]1 D(V 10) or [D(V 10)]1 D(V 11) M1					
	SC	[P(X11) =]1 - P(X, 10) or [P(X12) =]1 - P(X, 11) M1				
	SC	$[P(X11) =]1 - P(X,, 10) \text{ or } [P(X12) =]1 - P(X,, 11) \text{ M1}$ $= 0.0978 \text{ or } CR \ge 12 \text{ A1}$				
	SC	[P(X11) =]1-P(X,, 10) or [P(X12) =]1-P(X,, 11) M1 = 0.0978 or CR \geqslant 12 A1 Do not reject H ₀ /Not significant/Not in CR M1				