Question Number		Scheme	Marks
1(a)	P(X = 2)	$2) = \binom{100}{2} \times 0.05^2 \times 0.95^{98} = 0.081181$	M1
		awrt 0.0812	A1
		2 5	(2)
(b)		$\lambda = np = 5$	M1
		$P(X = 2) = \frac{e^{-5} \times 5^2}{2!} = 0.084224\cdots$	
		awrt 0.0842	A1
			(2)
(c)		$\frac{"0.084224" - "0.0812"}{"0.0812"} \times 100 \text{ or } \left(\frac{"0.084224"}{"0.0812"} - 1\right) \times 100$	M1
		awrt 3.7%	A1
			(2)
(d)	Eg Larg	e values of <i>n</i> and small values of <i>p</i>	B1
			(1)
(e)	P(Y =	$= 6) = 0.1601 = \frac{e^{-\lambda} \times \lambda^6}{6!}$ and $P(Y = 7) = 0.1418 = \frac{e^{-\lambda} \times \lambda^7}{7!}$	M1
		$\frac{0.1418}{0.1601} = "\frac{\frac{e^{-\lambda} \times \lambda^7}{7!}}{\frac{e^{-\lambda} \times \lambda^6}{6!}}"$	M1
		$\lambda = 7 \times \frac{0.1418}{0.1601}$ or e.g. $\frac{\text{awrt } 715}{\text{awrt } 115}$ or $7 \times 0.88(5696)$ 1÷0.16(08)	M1
	$\lambda = 6.1$	9987 awrt $\lambda = 6.2$	A1
			(4)
		Notes	Total 11
(a)	M1	attempt to find P(X=2) using a correct binomial distribution. Either the calculation shows be implied by awrt 0.081. Allow ${}^{100}C_2$ or ${}^{100}C_{98}$ or $\frac{100!}{2!98!}$ for $\binom{100}{2}$	wn or can
	A1	awrt 0.0812	
(b)	M1	for mean = 5 stated or implied by working	
	A1	awrt 0.0842 or accept 0.0843 if tables used $(0.1247 - 0.0404 = 0.0843)$ may be seen in	n (c)
(c)	M1	correct method using their answers to (a) and (b) (can be implied by correct answer)	27
	A1	awrt 3.7% or accept 3.75%. Condone awrt 3.8% if using 0.0843. Do not accept e.g. 0.0 any two suitable comments which refer to <i>n</i> /sample/trials being large/big and <i>p</i> /probab	
(d)	B1	chance being small/little, specific values not expected but allow values e.g. " $n > 50$, μ	<i>v</i> < 0.2"
(-)	р. т.	but not just " $np < 10$ ". Allow e.g. " $np < 10$ if $n > 50$ ". Ignore non-contradictory co	mments
(e)	M1	Two correct simultaneous equations in terms of λ . for using ratio of probabilities for their two simultaneous equations (one must have been been been been been been been be	en correct
	M1	or implied). May be implied by awrt 6.2. Condone errors dealing with their Poisson ex $\frac{e^{-\lambda} \times \lambda^{7}}{7!}$ provided they attempt to divide the two given probabilities either way round.	pressions

	for solving their linear equation in λ from two simultaneous equations (one must have been
M1	correct or implied) via a correct rearrangement. i.e. $7 \times \text{their } \frac{0.1418}{0.1601} \left(= \frac{9926}{1601} \text{ or } = \frac{89334}{14409} \right)$
	Condone premature rounding/truncation of these numbers in the expression. May be implied by awrt 6.2.
	awrt 6.2 following two correct simultaneous equations or a correct equation in λ .
A1	Do not allow following an invalid method seen e.g. using the equation solver on the individual
	equations leading to values of 6.20004 and 6.1998 which scores M1M0M0A0

Question Number			Scheme	;			Marks
2(i)(a)	μ is not (a statistic	c) as it is an unkn	own (parameter)			B1
(b)	\bar{x} is (a statistic) as it is based on (known) observations .						B1
							(2)
(ii)	Outcome	es $Y_1 = 2$,	$Y_2 = 5 \text{ or } Y_1 = 2, \Sigma$	$Y_2 = 6 \text{ or } Y_1 = 5, Y$	$f_2 = 6$ oe only		M1
				$\frac{5}{2} \left(= \frac{1}{3} \times \frac{2}{3} + \frac{1}{4} \times \frac{2}{3} \right)$			M1
			=	$=\frac{47}{144}=0.32638\cdots$		awrt 0.326	A1
							(3)
(iii)(a)	Possible	ordered o	outputs (3, 4), (3, 5	5), (4, 3), (4, 5), (5	5, 3), (5, 4)		B1
							(1)
(b)	{10, 11,	13, 14}					M1, A1
							(2)
(c)	Probabili	ity of any	one outcome =	$\frac{1}{-\infty}$			B1
(•)				6			21
	i	t	10	11	13	14	
		= t)	$\frac{10}{\frac{1}{6}}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	
	P(I	-1)	6	3	3	6	M1A1
							(3)
		I		Notes			Total 11
)(a) and (i)(b) toge				
(i)(a)	B1					n or a population par	ameter oe
(i)(b)	B1correct answer and valid reason suggests one of the following that \overline{x} is• based (solely) on observations/calculations/values/information/data/a function• contains no unknown population parameters• calculated/measured• numerical property of a sample/derived from a sampleDo not allow "it is a statistic because it is known"					n oe	
		SC B1B	0 for μ is not a stat	tistic and \overline{x} is a stat	istic stated or with	insufficient/incorrect	reasoning
(ii)			•	mplied and no extra			0
()	M1			-		ws which are require	ed. Order
		within th	e nair must be corr	rect		*	
	M1	at least t	wo correct products	s. If $\frac{1}{3} \times \frac{2}{3}$ oe is see	n then this is suffic	ient for M1	
	A1	awrt 0.32	26 Correct answer	3/3			
			ii)(a), (iii)(b) and (
(iii)(a)	B1	extras. C combina	Ordered outputs stated or may be seen e.g. in a list/table but not within calculations and no extras. Cannot be implied by their final table in (c). Check by the question for their combinations. Isw if the 6 combinations are stated but they subsequently write 7, 8 and 9 (the sums of the combinations). Do not accept $(3, 4) \times 2$ $(3, 5) \times 2$, $(5, 4) \times 2$				

S2_2025_01_MS

(iii)(b)	M1	their calculat	at least 2 correct values from 10, 11, 13 and 14 (accept any list form or within a table as part of their calculations). Condone repeats/extras <i>Condone with replacement at least 2 correct values from 9, 10, 11, 12, 13, 14 and 15</i>						
	A1	all correct an	d no extras	/repeats rem	oved. May b	e implied by	y final table i	in (c)	
(iii)(c)	B1	probability of $\frac{1}{6}$ or equivalent calculation eg $\frac{1}{3} \times \frac{1}{2}$. May be implied by a correct probability for one of the values in the table.							
	at least 2 correct probabilities or calculations correctly paired with the correct values of a Condone with replacement at least 2 from:								
	M1	t	9	10	11	12	13	14	15
		$\mathbf{P}(T=t)$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
	A1	value. Condo	fully correct. Need not be in a table but must have a correct probability associated with correct value. Condone a different variable to $T \text{ eg } X$ a correct table with no incorrect working seen implies full marks for (iii)(b) and (iii)(c)						

Question Number	Scheme	Marks
3(a)	$\begin{cases} \frac{1}{6k} & -k \leqslant x \leqslant 5k \end{cases}$	B1
5(4)	0 otherwise	B1
(b)	$\frac{f(x)}{k_{\rm K}}$	(2) B1 B1ft
	-k $5k$ x	(2)
(c)	$\mathcal{E}(X) = \frac{-k+5k}{2} = 2k$	B1
	-	(1)
(d)	$F(X) = \int_{(-k)}^{(x)} "\frac{1}{6k} "(da)$	M1
	$= \left[\frac{a}{6k}\right]_{a=-k}^{a=x} \Rightarrow F(x) = \frac{x}{6k} + \frac{1}{6} \text{ oe} \qquad \qquad \text{Alt:} \qquad F(x) = \frac{x}{6k} + c \\ \text{Use of } F(-k) = 0 \text{ or } F(5k) = 1 \\ \text{giving } c = \frac{1}{6} \end{cases}$	A1
	$\begin{cases} 0 & x < -k \\ \frac{x}{6k} + \frac{1}{6} & -k \le x \le 5k \\ 1 & x > 5k \end{cases}$	B1 A1
(e)	Var(X) = $\frac{1}{12}(5kk)^2 = 3k^2$ Alt: $E(X^2) = \int_{(-k)}^{(5k)} \frac{x^2}{6k} dx$	(4) M1
	$E(Y) = E(X^{2}) = Var(X) + (E(X))^{2} = 3k^{2} + "(2k)"^{2} = "\frac{1}{6k} \left[\frac{x^{3}}{3}\right]_{-k}^{5k} "$	dM1
	$=7k^2 \qquad \qquad \frac{125k^3 + k^3}{18k} = 7k^2$	A1
(0)		(3)
(f)	$\left(P(Y < 2k^2) = P(X^2 < 2k^2) = \right) P(-\sqrt{2}k < X < \sqrt{2}k)$	M1
	$= P(-k < X < \sqrt{2k})$ $\left(=\frac{\sqrt{2k}-k}{6k}\right) = \frac{\sqrt{2}+1}{6} \text{ or exact equivalent}$	M1 A1
		(3)
		Total 15

		Notes
(a)	B1	correct pdf. Condone $\frac{1}{5k+k}$ but not $\frac{1}{5k-k}$. Must be seen in (a).
	B1	all correct, allow use of \leq instead of \leq . B0B1 is not possible.
(b)	B1	correct horizontal line / rectangle drawn which must be both sides of the <i>y</i> -axis. Ignore the presence or absence of vertical lines at $-k$ and $5k$
	B1ft	labels correct, -k, 5k and " $\frac{1}{6k}$ " ft on their f(x), provided f(x) is a constant.
(c)	B1	cao (condone $2 \times k$)
(d)	M1	a correct integral expression for their pdf from (a). Ignore/condone missing limits. May be implied by their integrated expression. Alternatively, attempts the equation of the line between $(-k, 0)$ and $(5k, 1)$
	A1	$\frac{x}{6k} + \frac{1}{6}$ or A correct expression for $-k \le x \le 5k$ e.g. $\frac{x+k}{6k}$ will imply M1A1 1 st and 3 rd lines of cdf correct, allow use of 'otherwise' for one of these lines
	B1	1 st and 3 rd lines of cdf correct, allow use of 'otherwise' for one of these lines
	A1	for correct 2nd line of cdf correct: $\frac{x}{6k} + \frac{1}{6}$ or e.g. $\frac{x+k}{6k}$ and $-k \le x \le 5k$ (oe), allow use of < instead of \le
(e)	M1	correct calculation to find Var(X), does not need to be simplified. Alt correct integral for their pdf in (a) (not just the general expression). Condone missing limits.
	dM1	dep on previous M1 for a correct calculation to find $E(Y)$ using their part (c). Alt attempt integration (not wrt k) for their pdf in (a), which must be a constant i.e. $\frac{x^2}{"6k"} \rightarrowx^3$, and correct limits shown or used
	A1	cao
(f)	M1	for an attempt to find the range of possible values for X (inside region) involving $\sqrt{2}k$ or $\sqrt{2}k^2$ or $\sqrt{2k}$. May be implied by further work. May attempt 1 – outside region. You do not need to see P()
	M1	$-k < X < \sqrt{2}k$ seen or implied. e.g. $F(\sqrt{2}k)$, $P(X < \sqrt{2}k)$ May attempt $1 - P(\sqrt{2}k < X < 5k)$ do not be concerned with strict or inclusive inequality signs used.
	A1	cao or exact equivalent e.g. $\frac{\sqrt{2}}{6} + \frac{1}{6}$ or $\frac{\sqrt{2}k + k}{6k}$ (note decimal answer awrt 0.402 is M1M1A0) isw after correct answer seen

Question Number		Scheme		Marks	
4(i)(a)		$E(X^{2}) = \int_{1}^{3} x^{2} \times \frac{x^{3}}{20}$	$dx \left(=\int_1^3 \frac{x^5}{20} dx\right)$	M1	
		$=\left[\frac{3}{1}\right]$		A1	
		$=\frac{729}{120}-$	$\frac{1}{120} = \frac{91}{15}$	A1 (3)	
(b)		$Var(E) = "E(X^2)" - (X^2)"$	$(2,42)^2$	(3)	
			$p^2 = 0.21026$	M1	
			awrt 0.210	A1ft (2)	
(ii)(a)		ler than Q_{3} , $S \sim B(10, 0.75)$ $P = 1 - P(S \le 6)$ = 1 - 0.22412 = 0.77587	Alt: No larger than Q ₃ , $L \sim B(10, 0.25)$ P($L \leq 3$) = 0.77587 (tables give 0.7759)	(2) B1 M1	
		awrt 0.776	awrt 0.776	A1 (3)	
(b)	P(S	$\geq 5) = 1 - P(S \leq 4)$	$P(L \leq 5)$	M1	
	=1-0.0)19727 = 0.98027	= 0.98027 (tables give 0.9803)	A1	
		= 0.98027	awrt 0.980	A1 (2)	
		No		Total 10	
(i)(a)	M1	correct method stated or implied cond x^{6}			
	A1	$\frac{x}{120}$ correct and correct limits show	n or used (which may be implied by final answer))	
	A1	$\frac{91}{15}$ oe (provided $\frac{x^6}{120}$ oe seen). May	y be seen in (b).		
(b)	M1	correct calculation ft their $E(X^2)$ fr	om (a)		
	A1ft awrt 0.210 accept $\frac{1577}{7500}$ Correct answer 2/2. Condone 0.21 with working seen				
(ii)(a)	ft if (a) is rounded to 6.07 leading to awrt 0.214B1 $B(10, 0.75)$ or $B(10, 0.25)$ oe stated in either (ii)(a) or (ii)(b), or implied by a correct probability in (ii)(a) or (ii)(b)				
	M1	correct probability statement for their $Po(10p)$ used. Implied by correct and	B(10, p), where $p = 0.25$ or $p = 0.75$ or allownswer.	w if	
	A1	awrt 0.776			
(b)	M1	correct probability statement for their $Po(10p)$ used. Implied by correct and	B(10, p), where $p = 0.25$ or $p = 0.75$ or allowed as were	w if	
	A1	awrt 0.980 (condone 0.98 with correct			

Question Number		Scheme	Marks			
5(a)	No of meteors in 20 mins, $M \sim Po(5)$ oe					
(i)		$P(M \ge 6) = 1 - P(M \le 5)$				
		= 1 - 0.6160 = 0.3840	M1			
		awrt 0.384	A1			
(ii)		$P(M \leq 3)$				
		= 0.2650				
		awrt 0.265	A1			
			(4)			
(b)		$H_0: \lambda = 15$ $H_1: \lambda > 15$	B1			
	E 20		(1)			
(c)		nins use $X \sim Po(7.5)$ $P(X \le 12) = 0.9573$	M1			
		Correct probability statement: $P(X \ge 13) = 0.0427$	A1			
	Critical	Region $X \ge 13$	B1			
	-		(3)			
(d)		sistic $x = 12$ is not in critical region oe	M1			
		fficient evidence to reject H_0 / insignificant result) ificant evidence that the number of meteors to be seen				
	<u> </u>	eased/no significant evidence to support the	A1			
		my club's claim				
			(2)			
		$\mathbf{D}_{\mathbf{r}}(5)$ are used as involted by connect energy in (i) as (ii) Sight (to 2), 0 of any of 0.20	Total 10			
(a)	B1	Po(5) seen, used or implied by correct answer in (i) or (ii). Sight (to 3sf) of any of 0.26 0.765(0), 0.4405 (or 0.5595), 0.616(0) (or 0.384(0)), 0.7622 (or 0.2378) implies this m				
(i)	M1	For an attempt at calculating $1 - P(M \leq 5)$ with a Poisson distribution. Imp. by corre	ct answer			
	A1	A1 awrt 0.384 (condone $\frac{48}{125}$)				
(ii)	A1	awrt 0.265 (independent of the M mark in (i) so B1M0A0A1 is possible)				
(h)	B1	written in terms of λ or μ only (accept 7.5 instead of 15 if consistently used for both)				
(-)		evidence of $Po(7.5)$ stated or used. Sight of any of 0.0203 or 0.9208 (or 0.0792), 0.92	573 (or			
(c)	M1	0.0427), 0.9784 (or 0.0216), 0.9897 (or 0.0103) to 2sf with probability statement or 3s own implies this mark.				
	A1	correct probability statement $P(X \ge 13)$ oe and awrt 0.0427 oe (awrt 4.27%).				
	D1	correct critical region $X \ge 13$ (or $X > 12$) only, with or without probability given a	nd			
	B1	independent of their (b). Allow a different letter for X but do not allow CR.				
		For a correct comparison ft their CR $X \ge a$ or (may be written as $P(X \ge a)$) where	$a \ge 13$			
	1	indicating 12 is not in the critical region. e.g. $12 < "13"$ so accept H ₀				
		indicating 12 is not in the entited region. e.g. $12 < 15$ so decept Π_0				
(d)	M1		0.95 and			
(d)	M1	Alternatively compares e.g. $P(X \ge 12) = 0.0792 (> 0.05)$ or $P(X \le 11) = 0.9208 <$				
(d)	M1	Alternatively compares e.g. $P(X \ge 12) = 0.0792 (> 0.05)$ or $P(X \le 11) = 0.9208 <$ indicates do not reject H_0 . Do not ignore contradictory non-contextual statements. Al				
(d)	M1	Alternatively compares e.g. $P(X \ge 12) = 0.0792 (> 0.05)$ or $P(X \le 11) = 0.9208 <$	low if they			

Question Number		Scheme	Marks
6			
(a)	200(1-	- p)	B1
()		1 /	(1)
		179.5-200	M1M1
(b)	$(z =) \pm \frac{1}{2}$	$\frac{179.5 - 200}{\sqrt{200(1-p)}}$	Alft
		$z = (\pm)1.87$	B1
		$\frac{179.5 - 200}{\sqrt{200(1-p)}} = -1.87$	
			A 1 ×
		$\sqrt{200(1-p)} = \frac{-20.5}{1.87} = 10.962*$	A1*cso
		-1.87	
			(5)
	-	0.600889 or	
(c)	200 - 20	$00p = \frac{75076}{625} (= 120.1216) \Longrightarrow 200p = \frac{49924}{625} (= 79.8784)$	M1
		625 (Classify) (Classi	
		p = 0.39911	A1
		awrt $p = 0.40$	
		NY ,	(2)
		$\frac{\text{Notes}}{200(1 - r)} = \frac{1}{200} \frac{1}{100} \frac{1}{100$	Total 8
(a)	B1	200(1-p) oe as variance. Must be seen in (a). isw if they subsequently squ or multiply out and make errors	lare root to find su
		attempt at continuity correction, sight of 179.5 or 180.5 may be implied by 1	9.5 or 20.5 imp. by
(b)	M1	a correct equation.	sie of 2010 mipt of
		standardisation using their Normal distribution $N(200, (a))$ (Note could us	e 220.5 for 179.5
	M1	and $z = 1.87$) implied by a correct equation. Condone use of 180 for this mar	k.
		Allow use of $200(1-p)$ in (b) if (a) is incorrect.	
	A1ft	for correct standardisation, ft their variance. Must have scored M1M1.	
	B1	awrt ± 1.87 calculator gives -1.8706	1 1 1
	A1*	cso for achieving awrt 10.963 following a correct equation i.e. when their states avalated to ± 1.87 the signs must be compatible otherwise $A0^*$	indardised
	AI"	expression is equated to ± 1.87 the signs must be compatible otherwise A0* If using a calculator to find the z-value look for awrt 10.959	
		$\frac{179.5 - 200}{\sqrt{200(1-p)}} = -1.87 \text{ oe scores M1M1A1ftB1}$	
		for rearranging the given answer to part (b) to $1 - p = awrt 0.6$ oe or $200 p = awrt 0.6$	- awrt 80 oe using
			÷
(c)	M1	the correct order of operations. Implied by awrt 0.4. May also rearrange to p	$p = \frac{10.96^{-} - 200}{0}$ or
(\mathbf{c})			
(0)			-200
(0)	A1	equivalent which implies this mark. awrt 0.40, use of 10.96 gives 0.399392	-200

Question Number	Scheme		Mar	:ks
7 (a)	$\begin{pmatrix} f(x) \\ g(x) \\ k \\ 2 \\ 3 \\ \end{pmatrix}$			
	Correct shape Fully correct including labels for 2, 3, 6, k and	nd 9k. Must be on the sketch	M1 A1	(2)
(b)	Mode = 6		B1	(1)
(c)(i)	$\int k(x-3)$	$\int_{0}^{2} dx = 1$	M1	
	$k \int_{2}^{6} x^{2} - 6x + 9 dx = k \left[\frac{1}{3} x^{3} - 3x^{2} + 9x \right]_{2}^{6}$	Alt method $\Rightarrow k \left(\frac{1}{3}x^3 - 3x^2 + 9x\right) + c$	M1	
	or $k \left\lfloor \frac{1}{3} (x-3)^3 \right\rfloor_2^6$	$k\left(\frac{1}{3}(2)^3 - 3(2)^2 + 9(2)\right) + c = 0$		
	$18k - \frac{26k}{3} = 1$ or $9k - \frac{k}{3} = 1$	$\Rightarrow c = -\frac{26}{3}k$ $k\left(\frac{1}{3}(6)^3 - 3(6)^2 + 9(6)\right) - \frac{26}{3}k = 1$	dM1	
	e.g. $\frac{28k}{3} = 1$	$\therefore k = \frac{3}{28} *$	A1*	
(ii)	$\frac{3}{28}\int_{2}^{5.71} x^2 - 6x + 9 \mathrm{d}x = 0.7465 \text{ and}$	$\frac{3}{2}\int_{0}^{6}r^{2}-6r+9dr=0.25348$ and		(4)
	$\frac{1}{28}\int_{2}^{5.72} x^{2} - 6x + 9 dx = 0.7544$	$\frac{3}{28}\int_{5.71}^{6} x^2 - 6x + 9 dx = 0.25348 \text{ and}$ $\frac{3}{28}\int_{5.72}^{6} x^2 - 6x + 9 dx = 0.24558$	M1 dM1	
	e.g. $0.7465 < 0.75 < 0.7544$ therefore $5.71 < Q_3 < 5.72$ oe	e.g. $0.24558 < 0.25 < 0.25348$ therefore $5.71 < Q_3 < 5.72$ oe	A1	(2)
Alt(ii)	$\frac{3}{28} \int_{2}^{5.71} x^2 - 6x + 9 dx - 0.75 = -0.003$ $\frac{3}{28} \int_{2}^{5.72} x^2 - 6x + 9 dx - 0.75 = 0.004$	$\frac{3}{28}\int_{5.71}^{6} x^2 - 6x + 9 dx - 0.25 = 0.003$ $\frac{3}{28}\int_{5.72}^{6} x^2 - 6x + 9 dx - 0.25 = -0.004$	M1 dM1	(3)
	$28 J_2$ e.g. there is a change of sign therefor	20	A1	
				(3)
			Tota	11 10

		Notes
(a)	M1	for correct positive quadratic shape in first quadrant ignore labelling with a minimum point on the <i>x</i> -axis. End point on the lhs should be lower than the end point on rhs. Condone poor curvature but not straight lines provided the intention is clear
	. 1	fully correct including the coordinates $(2, k)$ (accept $(2, \frac{3}{28})$), $(3, 0)$ and $(6, 9k)$
	A1	$(\operatorname{accept}(6, \frac{27}{28}))$ shown on sketch. Labels on axes are sufficient.
(b)	B1	mode = 6 only
(c)(i)	M1	correct integral set equal to 1. May be seen or implied in later work. Does not require limits.
	M1	attempt to expand brackets and integrate with at least one x^{n+1} term. Ignore coefficients of terms. May attempt to integrate $(x-3)^2 \rightarrow (x-3)^3$. Does not require limits
	dM1	dep on both previous M marks for use of correct limits proceeding to a linear equation in k set equal to 1 or implied.
	A1*	cso including correct use of brackets. Must show some evidence of evaluation after
		substituting in limits before proceeding to $k = \frac{3}{28}$.
		e.g. $k\left(\frac{1}{3}(6-3)^3 - \frac{1}{3}(2-3)^3\right) = 1 \Longrightarrow k = \frac{3}{28}$ is A0*
Alt(c)(i)	M1	correct integral set equal to 1. May be seen or implied in later work. Does not require limits.
	M1	attempt to expand brackets and integrate with at least one x^{n+1} term. Ignore coefficients of terms. May attempt to integrate $(x-3)^2 \rightarrow (x-3)^3$. Does not require limits.
	M1	for substituting $x = 2$ into their integrated expression and set equal to 0 to find <i>c</i> in terms of k $\left(-\frac{26k}{3}\right)$ Then substitutes in $x = 6$ and set equal to 1 achieves a linear equation in <i>k</i> . (or the opposite way round using $x = 6$ and setting equal to 1 to find <i>c</i> and then substituting $x = 2$
	A 4 5	and setting equal to 0)
	A1*	cso including correct use of brackets. Must show some evidence of evaluation after substituting in $x = 6$ (or $x = 2$ if the other way round) before proceeding to $k = \frac{3}{28}$.
(ii)	M1	1 calculation attempted, ie attempting to evaluate 1 definite integral with the correct limits. Implied by awrt 0.747 or awrt 0.754 or awrt 0.253 or awrt 0.246
	dM1	dep on 1 st M for 2 calculations attempted. Implied by both correct values to 3sf
	A1	for correct values awrt 0.747 and awrt 0.754 (or awrt 0.254 and awrt 0.246), comparisons and justification of Q_3 . Must refer to the upper quartile oe. Not just e.g. <i>x</i> . Do not penalise mislabelling of their functions.
Alt(ii)	M1	1 calculation attempted, ie attempting to evaluate 1 definite integral with the correct limits and subtracting 0.75 or 0.25 as appropriate
	dM1	dep on 1 st M for 2 calculations attempted (imp. by correct values rounded to 1sf or truncated)
	A1	for correct values (rounded or truncated), comparisons and justification of Q_3 . Must refer to the upper quartile oe. Not just e.g. <i>x</i> . The comparisons with 0 may be done in their working. Do not penalise mislabelling of their functions.
		Note: May substitute 5.71 and 5.72 into $a^3 - 9a^2 + 27a - 47 = 0$ instead proceeding to values of -0.0974 and 0.12364
(ii)		Integrates, sets equal to 0.75 and solves with a justification of Q ₃ :
	SC M1dM1	$\left[\frac{3}{28}\int_{2}^{a}x^{2} - 6x + 9 dx = 0.75 \Rightarrow \frac{3}{28}\left[\frac{1}{3}x^{3} - 3x^{2} + 9x\right]_{2}^{a} = 0.75 \Rightarrow a = 5.714$
	A0	$(=a^3 - 9a^2 + 27a - 47 = 0) \Longrightarrow a = awrt 5.714$
		$5.71 < 5.714 < 5.72$ therefore $5.71 < Q_3 < 5.72$ oe