Question			Marks		
Number	Scheme				
1 (a)	$X =$ Number of items of litter found in a $2m^2$ area of the beach So $X \square Po(8)$				
	P(X=5	$) = \frac{e^{-8} \times 8^5}{5!} \text{ or } P(X \times 5) - P(X + 4) = 0.1912 - 0.0996$	M1		
		= 0.09160 awrt 0.0916	A1		
			(2)		
(b)	Y = Num	ber of face masks found in a 5m ² area of the beach			
	<i>Y</i> □ Po(€	or $P(Y5) = 1 - P(Y ,, 4) = 1 - 0.2851$	M1		
		= 0.7149 awrt 0.715	A1		
			(2)		
(c)	W = Nun	nber of items of litter that are not face masks found in a 20m ² area of the beach			
	$W \square N(5)$	(6,56)	M1		
	P(W < 6	$P(W < 60) = P\left(Z < \frac{59.5 - 56}{\sqrt{56}}\right)$			
	Tables [= P(Z < 0.47) = 0.6808 calculator 0.68000 awrt 0.68	A1		
			(4)		
		Notes	Total 8		
(a)	M1	for use of $\frac{e^{-8}\lambda^5}{5!}$ or $P(X^{\frac{1}{2}}) - P(X = 4)$			
	A1	awrt 0.0916 (correct answer scores 2 out of 2)			
		for writing or using Po(6)			
(b)	M1	or for a correct probability statement $1 - P(Y, 4)$ or $P(Y5)$			
,		e.g. $P(Y \boxtimes 5) = 1 - P(Y \subseteq 5)$ is M0			
	A1	awrt 0.715 (correct answer scores 2 out of 2)			
		for writing or using N(56, 56) may be seen in standardisation			
(c)	M1	(may be implied by the standardisation $\frac{x-56}{\sqrt{56}}$)			
	M1	standardising with 59.5/60/60.5, their mean and their standard deviation			
	M1	using a continuity correction $60 + 0.5$ [=60.5] or $60 - 0.5$ [=59.5]			
	A1	awrt 0.68 (NB Use of exact Poisson gives 0.68617and scores 0 out of 4)			

Question Number	Scheme			
2 (a)	$B\left(25,\frac{1}{5}\right)$			
			(1)	
(b)(i)	[M =]4X - (25 - X) $[= 5X - 25]$			
(ii)	E(M) = '5'E(X) - '25' M1			
	E(X) = r	$np = 25 \times \frac{1}{5} = 5$	M1	
	E(M) = 3	$5 \times 5 - 25 = 0 *$	A1*	
			(4)	
(c)	M? 30=	$\Rightarrow '5'X - '25'? \ 30[\Rightarrow X? \ 11]$	M1	
	P(X?')	$ 11'\rangle = 1 - P(X? '10')] = 1 - '0.9944'$	M1	
	=0.0056	awrt 0.0056	A1	
			(3)	
(d)	<i>Y</i> □ B(50	0, 0.5)		
	P(n < Y,,	30) = 0.9328	M1	
	P(Y剟30)	1 - P(Y n) = 0.9328	M1	
	P(Y,, n)	=0.0077	M1	
	n = 16		A1	
			(4)	
		Notes Correct distribution fully specified. Allow in words e.g. Binomial with $n = 25$ and $p = 6$	Total 12	
(a)	B1	Must be seen in part (a)	0.2	
		Mark parts (b)(i) and (b)(ii) together		
(b)(i)	B1	For a correct expression for M Allow unsimplified		
	For either '5'E(X)-'25' or $E(M) = 5 \times \left(25 \times \frac{1}{5}\right) - 25$ or '4'E(X)-1('25'-E(A))		$-\mathrm{E}(X)$	
(ii)	M1	This must be an expectation statement with the expectation stated in symbol or in wor	ds.	
		$5 \times 5 - 25 = 0$ or $4 \times 5 - 1 \times 20 = 0$ on its own is M0		
	M1	For sight of $25 \times \frac{1}{5}$ or stating $E(X) = 5$		
	A1*	Fully correct solution with $E(M) = 0$ stated. This may be stated in words.		
	AI"	The answer is given so no incorrect working can be seen		
SC		M1M1 [Expected number of marks (per question) = $]4 \times \frac{1}{5} - 1 \times \frac{4}{5}$ A1 therefore E	(M)=0	
(c)	M1 For substitution of their M into a linear inequality in terms of X implied by X ? 11			
	M1 For use of correct probability statement from their '11'			
(1)	A1	awrt 0.0056 (calc 0.0055549)		
(d)	M1 M1	For a correct probability equation (implied by 2^{nd} M1) For $P(Y \boxtimes 30) - P(Y = n) = 0.9328$ or $0.9405 - P(Y, = n) = 0.9328$		
	M1	For $P(Y_n, n) = 0.0077$		
	A1	Cao		
9.5	711		0077	
SC		scores M1M0M1A0		
SC		$P(n < Y_{*}, 30) = 0.9328$ $P(Y \ge 30) - P(Y_{*}, n-1) = 0.9328$ $P(Y_{*}, n-1) = 0.$	0077	

Question		Scheme	Marks	
Number 3 (a)	Po(7) B1			
3 (a)	PO(7)		(1)	
(b)	Custome	ers enter the shop occur singly/randomly/independently/constant (average) rate	B1, B1	
(0)	Custom	ors enter the shop event singly rundering, maspendently reconstant (average) rune	(2)	
(c)	$H_{\alpha}: \lambda =$	'7' H₁: λ≠'7'	B1ft	
(0)				
(d)	P(X? 1)	= awrt 0.0073 $P(X? 2) = awrt 0.0296$	M1	
(u)		R(X) = A = A = A = A = A = A = A = A = A =	M1	
	$X? 1 \cup X$		Al	
	71.107	1. 11	(3)	
(e)	0.0073+	-0.0128 = 0.0201	M1	
(C)	So 2.01%		Alft	
	50 2.017	U	(2)	
(f)	12 is not	in the critical region	M1	
		is insufficient evidence that rate of customers entering the shop has changed	A1	
		· · · · · · · · · · · · · · · · · · ·	(2)	
		Notes	Total 11	
(a)	B1	Correct distribution fully specified. Po(isson) and $\lambda = 7$		
(1.)	D1 D1	For two of the given assumptions (must have context of customers/people)		
(b)	B1, B1	Context only needs to be stated once. (B1B0 for one assumption in context or for two assumptions with no context)		
()	D16	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ		
(c)	B1ft	Ft their 7 from part (a) in the hypotheses		
		Use of Po(7) to find the lower critical value.		
(d)	M1	May be implied by either awrt 0.0073 or awrt 0.0296 seen (must be seen in part (d))		
		Also implied by $X=1$ or $X ? 1$		
		Use of Po(7) to find the upper critical value.		
	M1	May be implied by awrt 0.0270 or awrt 0.0128 or awrt 0.973 or awrt 0.987 seen (must part (d))	be seen in	
		Also implied by $X=14$ or X ? 14		
		X? 1, X ? 14 correct CR scores 3 out of 3 but 14? X ? 1 is M1M1A0		
		Allow equivalent forms e.g. $X < 2$, $X > 13$		
	A1	Must be a CR and not a probability statement		
		P(X? 1), $P(X? 14)$ scores M1M1A0		
(e)	M1			
	A1ft	awrt 0.0201 or awrt 2.01% ft the sum of their two selected probability tails		
		For a correct comparison of 12 with their CR (or their implied CR if one is not explicit	tly stated),	
(f)	M1	12 is not in the CR condone $12 < '14'$ Finding $P(X = 12)$ is M0		
		Correct conclusion in context.		
		Must be a rate, e.g. number in/per 10-minute period (not number on its own).		
	A1	No hypotheses in part (c) then A0		
			ım ıs not	
	A1	Finding P(X12) on its own is M0, they must state 12 is not in the CR Correct conclusion in context. Must be a rate, e.g. number in/per 10-minute period (not number on its own).	im is not	

Question			Scheme		Marks
Number	Scheme			Iviaiks	
4 (i)(a)	$\frac{b-27}{b-a}$	$= \frac{3}{4} \text{ or } \frac{27 - a}{b - a}$	$\frac{a}{a} = \frac{1}{4}$ and $\frac{(b-a)^2}{12} = 300$		M1M1
	a = 12 and b = 72			A1	
					(3)
(b)	[4P(X	< k - 10) = P($(X > k + 20) \Rightarrow $ $4 \left(\frac{k - 10 - '12'}{'72 - 12'} \right) = \frac{'72' - (6)}{'72}$	$\frac{(k+20)}{-12'}$	M1
	4(k-22)	$(2) = 52 - k \Longrightarrow$	k = 28		A1
	`	,			(2)
(ii)	<i>L</i> □ U(2)	1, 42)	$L \square U(0,42)$	S □ U(5.25, 10.5)	(-)
	$\frac{L}{4} - \left(\frac{42}{4}\right)$	$\left(\frac{-L}{4}\right) > 2$	$\frac{L}{4} - \left(\frac{42 - L}{4}\right) > 2 \text{ or } \left(\frac{42 - L}{4}\right) - \frac{L}{4} > 2$	S - (10.5 - S) > 2	M1
	L > 25		L < 17 or L > 25	S > 6.25	A1
	=(42-'	$25') \times \frac{1}{21}$		$(10.5 - 6.25) \times \frac{1}{5.25}$	M1
			$=\frac{17}{21}$ oe		A1
	21				
			21		(4)
					(4) Total 9
(i)(a)	M1	For setting u	Notes	variance	(4) Total 9
(i)(a)	M1 M1		Notes up a correct equation for the probability or the		
(i)(a)			Notes up a correct equation for the probability or the probability and the probabilit		
(i)(a) (b)	M1	For setting u For $a = 12$ a	Notes up a correct equation for the probability or the probability and the probabilit		
	M1 A1	For setting u For $a = 12$ a	Notes up a correct equation for the probability or the up a correct equation for the probability and the up a correct equation for the probability and the und $b = 72$ (correct answers score 3 out of 3)		
	M1 A1 M1	For setting upon For $a = 12$ a For an unsine Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen	Notes In a correct equation for the probability or the property and the	e variance	
(b)	M1 A1 M1 A1	For setting upon For $a = 12$ a For an unsine Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen may be implied.	Notes In a correct equation for the probability or the property and the	e variance $5-S) > 2$ tter for L or S	Total 9
(b)	M1 A1 M1 A1	For setting upon For $a = 12$ a For an unsing Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen may be implified to $L > 25$ or	Notes In a correct equation for the probability or the partial and the probability a	e variance $5-S) > 2$ tter for L or S	Total 9
(b)	M1 A1 M1 A1	For setting upon For $a = 12$ a For an unsing Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen may be implosed in For use of (-1)	Notes In a correct equation for the probability or the partial according a correct equation for the probability and the prob	e variance $5-S) > 2$ tter for L or S	Total 9
(b)	M1 A1 M1 A1	For setting upon For $a = 12$ a For an unsing Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen may be implosed in For use of (40) or (40)	Notes up a correct equation for the probability or the partial and the property and the p	e variance $5-S) > 2$ tter for L or S	Total 9
(b)	M1 A1 M1 A1 M1 A1	For setting upon For $a = 12$ a For an unsing Cao For $\frac{L}{4} - \left(\frac{42}{4}\right)$ may be seen may be implosed in For use of (40) or (40)	Notes In a correct equation for the probability or the sip a correct equation for the probability and the sind $b = 72$ (correct answers score 3 out of 3) in pliffied equation ft their a and their b $ \frac{2-L}{4} > 2 \text{ or } \left(\frac{42-L}{4}\right) - \frac{L}{4} > 2 \text{ or } S - (10.3) $ In a probability statement allow any letted by $L > 25$ or $L < 17$ or $S > 6.25$ $ \frac{L < 17 \text{ or } S > 6.25 \text{ may be seen in a probability}}{21} \times \frac{1}{42} + (42 - '25') \times \frac{1}{42} $ $ \frac{1}{5.25} \times \frac{1}{5.25} $	e variance $5-S) > 2$ tter for L or S	Total 9

Question			
Number		Scheme	Marks
5 (a)	$\int_1^x \frac{1}{4} (3-x)^2 dx$	$\int dt = \frac{1}{4} \left[3t - \frac{t^2}{2} \right]_1^x \text{or} \int \frac{1}{4} (3 - x) dx = \frac{1}{4} \left[3x - \frac{x^2}{2} \right] + C$	M1
	L \	$\frac{x^2}{2} - \left(3 - \frac{1}{2}\right) \text{or } \frac{1}{4} \left[3(1) - \frac{(1)^2}{2}\right] + C = 0 \text{ and } C = -\frac{5}{8}$ $\text{to } \frac{1}{4} \left(3x - \frac{x^2}{2}\right) - \frac{5}{8} [\text{for } 1 ? \ x ? \ 2] *$	A1*
			(2)
(b)	$\int_2^x \frac{1}{4} dt +$	F(2) or $\int \frac{1}{4} dx$ and using $+ c$ with F(2) = $\frac{3}{8}$ or $0.25(x-2) + F(2)$	M1
	$\int_3^x \frac{1}{4} (t-t)^{-\frac{1}{2}}$	2) dt + F(3) or $\int \frac{1}{4}(x-2) dx$ and using + c with either F(3) = $\frac{5}{8}$ or F(4) = 1	M1
		0 x < 1	
		$\frac{1}{4}\left(3x-\frac{x^2}{2}\right)-\frac{5}{8}$ 1? x? 2	
			A1
	F(x) =	$\frac{1}{8}(2x-1)$ $2 < x ? 3$	A1
			B1
		$\frac{1}{4} \left(\frac{x^2}{2} - 2x \right) + 1 3 < x ? 4$	
		$1 \qquad x > 4$	
	-/		(5)
(c)	P(1.2 < 2)	Y < 3.1) = $F(3.1) - F(1.2)$	
	$\int \frac{1}{4} \left(\frac{(3.1)}{2} \right)^{1/2}$	$\left(\frac{1}{2}\right)^{2} - 2(3.1) + 1 - \left(\frac{1}{4}\left(3(1.2) - \frac{(1.2)^{2}}{2}\right) - \frac{5}{8}\right) = \frac{89}{160}$ awrt 0.556	M1 A1
		N	(2)
		Notes 1	Total 9
(a)	M1	For a correct method for 1? x ? 2 Condone poor notation e.g. $\int_{1}^{x} \frac{1}{4}(3-x) dx$	
	A1*	A fully correct solution with substitution seen or C found leading to $F(x) = \frac{1}{4} \left(3x - \frac{1}{4} \right)$	$\left(\frac{x^2}{2}\right) - \frac{5}{8}$
(b)	M1	For a correct method for $2 < x$? 3	
	M1	For a correct method for $3 < x$? 4	
	A1	Third line correct including inequality. Allow < instead of ≤	
	A1	Fourth line correct including inequality. Allow < instead of ≤	
	B1	First and fifth line correct. Allow "otherwise" for the range on the first or fifth line b	
		For use of $F(3.1) - F(1.2)$ from the correct lines of their $F(x)$ allow ft on their 4^{th} line	
(c)	M1	or correct use of f(x) or area e.g. $\frac{1}{2} \times \frac{7}{10} \times 0.8 + 1 \times \frac{1}{4} + \frac{1}{2} \times \frac{21}{40} \times 0.1$ For $\frac{89}{160}$ oe or awrt 0.556 NB: Use of F(3.1) with $\frac{1}{8}(2x-1)$ for $2 < x$? 3 gives	
		For $\frac{89}{}$ oe or awrt 0.556 NB: Use of F(3.1) with $\frac{1}{}$ (2x-1) for 2 < x? 3 gives	s 0.555 and
	A1	160 8 2 4 1) 161 2 4 1 1 3 gives	3.220 ana
		scores M0A0	

Question Number	Scheme Marks			
6 (a)	Box A:	$P(1) = \frac{1}{4}$ $P(2) = \frac{3}{4}$ Box B: $P(2) = \frac{1}{5}$ $P(5) = \frac{4}{5}$	B1	
	4 4 5 5 5 Totals (T) 5, 6, 8, 9, 11, 12 B1			
		(1, 2, 5) $(1, 5, 5)$ $(2, 2, 2)$ $(2, 2, 5)$ $(2, 5, 5)$	B1	
		[(1,5,2)] $[(2,5,2)]$	B1	
	P(T=5)	$[P(T=6)=]\frac{1}{4} \times \frac{1}{5} \times \frac{1}{5} \left[= \frac{1}{100} \right] $ $[P(T=6)=]\frac{3}{4} \times \frac{1}{5} \times \frac{1}{5} = \left[\frac{3}{100} \right]$		
	P(T=8)	$[P(T=9)=]2 \times \frac{1}{4} \times \frac{1}{5} \times \frac{4}{5} = \left[\frac{8}{100}\right]$ $[P(T=9)=]2 \times \frac{3}{4} \times \frac{1}{5} \times \frac{4}{5} = \left[\frac{24}{100}\right]$	M1	
	_	-1 4 4 [16]3 4 4 [48]	M1	
	P(T=1)	$[P(T=12)=]\frac{1}{4} \times \frac{4}{5} \times \frac{4}{5} = \left[\frac{16}{100}\right]$ $[P(T=12)=]\frac{3}{4} \times \frac{4}{5} \times \frac{4}{5} = \left[\frac{48}{100}\right]$	M1	
		5 6 9 0 11 12		
	P(T=t)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	
			(7)	
(b)	m=2		B1	
	P(M =	$(2) =]'\frac{1}{100}' + '\frac{8}{100}' + '\frac{3}{100}' + '\frac{24}{100}' = [\frac{36}{100}]$	M1	
	P(M =	$=5)=$]' $\frac{16}{100}$ '+' $\frac{48}{100}$ '= $\left[\frac{64}{100}\right]$ or $P(M=5)=1-P(M=2)$ '	M1	
	P(M=n)	m) $\frac{2}{36}$ $\frac{64}{100}$	A1	
		Notes	(4) Total 11	
(a)	B1	All 4 correct probabilities – may be seen in an equation	10tai 11	
()	B1	All 6 totals correct with no extras (ignore units if stated) (condone 8 or 9 listed twice	e)	
	B1	All 6 basic combinations correct, either seen or used (implied by the 3 rd M1 mark)		
	M1	Condone any permutation of the 6 basic combinations for this mark Correct method for one probability (ft their probabilities)		
	M1	Correct method for five probabilities (ft their probabilities)		
	M1			
	A1	cao Need not be in a table but probabilities must be attached to the correct total		
(b)	B1	For both values of m (no extras) If $m = 1$ is stated it must be stated that its probability $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stated it must be stated that $m = 1$ is stat	ty is 0	
	M1	Ft part (a) For a correct method to find $P(M = '2')$ For this mark there must only be 2 probability calculations		
	M1	Ft part (a) For a correct method to find $P(M = '5')$ For this mark there must only be 2 probability calculations		
	A1	cao Need not be in a table but probabilities must be attached to the correct total		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question Number		Scheme	Marks
(b) (i) (By symmetry) $b = -\frac{1}{16}$ B1 (ii) At (8, 0) $0 = -\frac{1}{16} \times 8 + c \Rightarrow c = \frac{1}{2}$ or at (4, 0.25) $0.25 = -\frac{1}{16} \times 4 + c \Rightarrow c = \frac{1}{2}$ M1 A1 (c) $E(X) = 4$ B1 $E(X^2) = \int_0^4 x^2 \left(\frac{1}{16} x \right) dx + \int_4^8 x^2 \left(-\frac{1}{16} x + \frac{1}{2} \right) dx$ M1 $= \frac{1}{64} \left[x^4 \right]_0^4 + \left[\frac{1}{64} x^4 + \frac{1}{6} x^3 \right]_x^8$ A1ft $= 4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right] \left[-\frac{56}{3} \right]$ dM1A1 $Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} *$ A1* (6) (d) $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4}$ or $\int_0^6 \frac{1}{16} x dx = 0.25 \Rightarrow \frac{Q_1^2}{32} = 0.25$ M1 $Q_1 = \sqrt{8} = 2.828 \text{ or } Q_2 = 8 - \sqrt{8} = 5.171$ awrt 2.83 or awrt 5.17 A1 $Q_1 = \sqrt{8} = 2.828 \text{ and } Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 and awrt 5.17 A1 (e) $\frac{50\%}{4}$ lies between Q_1 and Q_3 Statistician's claim: $P\left(\frac{1}{4} - \sqrt{\frac{8}{3}} < X < \frac{1}{4} + \sqrt{\frac{8}{3}} \right) = P(2.37 < X < 5.63)$ M1 as this is outside Q_1 and Q_3 , > 0.5/ statistician's claim is correct* or $P(2.37 < X < 5.63) = 0.6498 > 0.5 / statistician's claim is correct* (a) \frac{81*}{4} Allow any correct equivalent method. E.g. \frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. y = 0 = -\frac{1}{16}(x - 8) or use of integration or any valid method$	7 (a)	$\frac{1}{2} \times 8 \times 4a$	$a = 1 \Rightarrow a = \frac{1}{16} * \text{ or } \int_{[0]}^{[4]} ax dx = 0.5 \Rightarrow \left[\frac{ax^2}{2} \right]_0^4 = 0.5 \Rightarrow a = \frac{1}{16} *$	B1*
(ii)			1	(1)
(c) $E(X) = 4$ $E(X^2) = \int_0^4 x^2 \left(\frac{1}{16}x\right) dx + \int_4^8 x^2 \left(-\frac{1}{16}x + \frac{1}{2}\right) dx$ $= \frac{1}{64} \left[x^4\right]_0^4 + \left[-\frac{1}{64}x^4 + \frac{1}{6}x^3\right]_4^8$ $= 4 + \left[\left(-64 + \frac{25}{36}\right) - \left(-4 + \frac{32}{3}\right)\right] \left[-\frac{56}{3}\right]$ $Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} *$ $A1^*$ $Q_1 = \sqrt{8} = 2.828 \text{ or } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{or } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and } $	(b) (i)	(By symr	metry) $b = -\frac{1}{16}$	B1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii)	At (8, 0)	$0 = -\frac{1}{16} \times 8 + c \Rightarrow c = \frac{1}{2} \text{ or at } (4, 0.25) \ 0.25 = -\frac{1}{16} \times 4 + c \Rightarrow c = \frac{1}{2}$	M1 A1
$E(X^2) = \int_0^4 x^2 \left(\frac{1}{16}x\right) dx + \int_4^8 x^2 \left(-\frac{1}{16}x + \frac{1}{2}\right) dx \qquad \qquad M1$ $= \frac{1}{64} \left[x^4\right]_0^4 + \left[-\frac{1}{64}x^4 + \frac{1}{6}x^3\right]_4^8 \qquad \qquad A1ft$ $= 4 + \left[\left(-64 + \frac{256}{3}\right) - \left(-4 + \frac{32}{3}\right)\right] \left[-\frac{56}{3}\right] \qquad \qquad dM1A1$ $Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} \qquad \qquad \qquad A1^*$ (6) $(d) \qquad \frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4} \qquad \text{or} \qquad \int_0^6 \frac{1}{16}x \ dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$ $Q_1 = \sqrt{8} = 2.828 \qquad \text{or} \qquad Q_3 = 8 - \sqrt{8} = 5.171 \qquad \text{awrt } 2.83 \text{ or awrt } 5.17 \qquad A1$ $Q_1 = \sqrt{8} = 2.828 \qquad \text{and} \qquad Q_3 = 8 - \sqrt{8} = 5.171 \qquad \text{awrt } 2.83 \text{ and awrt } 5.17 \qquad A1$ $(e) \qquad 50\% \text{ lies between } Q_1 \text{ and } Q_3$ $\text{Statistician's claim:} P\left(\frac{1}{4} - \sqrt{\frac{8}{3}} \times X < \frac{1}{4} + \sqrt{\frac{8}{3}}}\right) = P(2.37 < X < 5.63) \qquad M1$ $\text{as this is outside } Q_1 \text{ and } Q_3, > 0.5 / \text{ statistician's claim is correct*}$ or $P(2.37 < X < 5.63) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ $(a) \qquad B1^* \qquad \text{Allow any correct equivalent method. E.g. } \frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}, \text{ integration, use of gradients, etc.}$ $Answer is given so a complete correct method with no incorrect working must be seen}$ $(b) \qquad B1 \qquad Cao$ $M1 \qquad \text{Use of equation of line to find } c \text{ e.g. } y - 0 = -\frac{1}{16}(x - 8) \text{ or use of integration or any valid method}$		D/II) 4		
$=\frac{1}{64}\left[x^4\right]_0^4 + \left[\frac{1}{64}x^4 + \frac{1}{6}x^3\right]_4^8 \qquad \qquad \text{A1ft}$ $=4 + \left[\left(-64 + \frac{256}{3}\right) - \left(-4 + \frac{32}{3}\right)\right] \left[=\frac{56}{3}\right] \qquad \qquad \text{dM1A1}$ $\text{Var}(X) = \frac{56}{3} - 4^2 = \frac{8}{3} \qquad \qquad$	(c)			B1
$=4+\left[\left(-64+\frac{256}{3}\right)-\left(-4+\frac{32}{3}\right)\right]\left[=\frac{56}{3}\right] \qquad \text{dM1A1}$ $Var(X)=\frac{56}{3}-4^2=\frac{8}{3} \qquad \text{A1*}$ (6) $\frac{1}{2}\times Q_1\times \frac{1}{16}\times Q_1=\frac{1}{4} \qquad \text{or} \qquad \int_0^{Q_1}\frac{1}{16}X \ dx=0.25 \rightarrow \frac{Q_1^2}{32}=0.25 \qquad \text{M1}$ $Q_1=\sqrt{8}=2.828 \qquad \text{or} \qquad Q_3=8-\sqrt{8}=5.171 \qquad \text{awrt } 2.83 \ \text{or awrt } 5.17 \qquad \text{A1}$ $Q_1=\sqrt{8}=2.828 \qquad \text{and} \qquad Q_3=8-\sqrt{8}=5.171 \qquad \text{awrt } 2.83 \ \text{and awrt } 5.17 \qquad \text{A1}$ $(c) \qquad 50\% \ \text{lies between} \ Q_1 \ \text{and} \ Q_3$ $\text{Statistician's claim:} \ P\left('4'-\sqrt{\frac{8}{3}} \text{as this is outside} \ Q_1 \ \text{and} \ Q_3, \ >0.5/\ \text{statistician's claim is correct*} \text{or} \qquad \qquad \text{A1*} P\left(2.370.5/\ \text{statistician's claim is correct*} \text{One of the equation of line to find } C \ \text{e.g.} \ \frac{1}{2}\times 4\times 4a=\frac{1}{2}\Rightarrow a=\frac{1}{16}, \ \text{integration, use of gradients, etc.} Answer \ \text{is given so a complete correct method with no incorrect working must be seen} \text{(b)} \qquad \text{B1} \qquad \text{Cao} \text{M1} \qquad \text{Use of equation of line to find } C \ \text{e.g.} \ y-0=-\frac{1}{16}(x-8) \ \text{or use of integration or any valid method}$		$\mathrm{E}(X^2) =$	$\int_0^4 x^2 \left(\frac{1}{16} x \right) dx + \int_4^8 x^2 \left(-\frac{1}{16} x + \frac{1}{2} \right) dx$	M1
$Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} *$ $Var(X) = \frac{56}{3} - 4^2 = \frac{8}{3} *$ $A1*$ (6) $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4} \text{or} \int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$ $Q_1 = \sqrt{8} = 2.828 \text{or} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17 \text{A1}$ $Q_1 = \sqrt{8} = 2.828 \text{and} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17 \text{A1}$ (6) $Solve \text{ lies between } Q_1 \text{ and } Q_3$ $Statistician's claim: P\(\frac{1}{4} - \sqrt{\frac{8}{3}} < X < \frac{1}{4} + \sqrt{\frac{8}{3}} = P(2.37 < X < 5.63) \text{M1}$ $as this is outside \(Q_1 \text{ and } Q_3, > 0.5 / \text{ statistician's claim is correct*} \text{A1*}$ $P(2.37 < X < 5.63) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ (2) $Notes$ $A1*$		= -	$\frac{1}{64} \left[x^4 \right]_0^4 + \left[-\frac{1}{64} x^4 + \frac{1}{6} x^3 \right]_4^8$	A1ft
(d) $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4} \text{or} \int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$ $Q_1 = \sqrt{8} = 2.828 \text{or} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17$ $Q_1 = \sqrt{8} = 2.828 \text{and} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17$ $A1$ $Q_1 = \sqrt{8} = 2.828 \text{and} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17$ $A1$ $Statistician's claim: P\left('4' - \sqrt{\frac{8}{3}} < X < '4' + \sqrt{\frac{8}{3}} \right) = P\left(2.37 < X < 5.63 \right)$ $as this is outside Q_1 and Q_3, > 0.5 / \text{ statistician's claim is correct*} Or P\left(2.37 < X < 5.63 \right) = 0.6498 > 0.5 / \text{ statistician's claim is correct*} A1* P\left(2.37 < X < 5.63 \right) = 0.6498 > 0.5 / \text{ statistician's claim is correct*} Q(2) Notes A1* $		= 4	$4 + \left\lceil \left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right\rceil \left[= \frac{56}{3} \right]$	dM1A1
(d) $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4} \text{or} \int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$ $Q_1 = \sqrt{8} = 2.828 \text{or} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ or awrt } 5.17$ $Q_1 = \sqrt{8} = 2.828 \text{and} Q_3 = 8 - \sqrt{8} = 5.171 \text{awrt } 2.83 \text{ and awrt } 5.17$ $A1$ $(e) 50\% \text{ lies between } Q_1 \text{ and } Q_3$ $\text{Statistician's claim: } P\left(\frac{1}{4} - \sqrt{\frac{8}{3}} < X < \frac{1}{4} + \sqrt{\frac{8}{3}} \right) = P\left(2.37 < X < 5.63\right)$ M1 $\text{as this is outside } Q_1 \text{ and } Q_3, > 0.5 / \text{ statistician's claim is correct*}$ or $P\left(2.37 < X < 5.63\right) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ $(2) \text{Notes} \text{Total 15}$ $\text{(a)} \text{B1*} \text{Allow any correct equivalent method. E.g. } \frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}, \text{ integration, use of gradients, etc.}$ $\text{Answer is given so a complete correct method with no incorrect working must be seen}$ $\text{(b)} \text{B1} \text{Cao}$ $\text{M1} \text{Use of equation of line to find } c \text{ e.g. } y - 0 = -\frac{1}{16}(x - 8) \text{ or use of integration or any valid method}$		Var(<i>X</i>) =	$=\frac{56}{3}-4^2=\frac{8}{3}$ *	A1*
$Q_1 = \sqrt{8} = 2.828 \text{ or } Q_3 = 8 - \sqrt{8} = 5.171 \text{ awrt } 2.83 \text{ or awrt } 5.17 \text{ A1}$ $Q_1 = \sqrt{8} = 2.828 \text{ and } Q_3 = 8 - \sqrt{8} = 5.171 \text{ awrt } 2.83 \text{ and awrt } 5.17 \text{ A1}$ $(e) 50\% \text{ lies between } Q_1 \text{ and } Q_3$ $\text{Statistician's claim: } P\left(^14 - \sqrt{\frac{8}{3}} < X < ^14 + \sqrt{\frac{8}{3}} \right) = P(2.37 < X < 5.63)$ $\text{as this is outside } Q_1 \text{ and } Q_3, > 0.5 / \text{ statistician's claim is correct*}$ $\text{or } P(2.37 < X < 5.63) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ A1* $\text{Notes} \text{Total 15}$ $\text{(a)} \text{B1*} \text{Allow any correct equivalent method. E.g. } \frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}, \text{ integration, use of gradients, etc.}$ $\text{Answer is given so a complete correct method with no incorrect working must be seen}$ $\text{(b)} \text{B1} \text{Cao}$ $\text{M1} \text{Use of equation of line to find } c \text{ e.g. } y - 0 = -\frac{1}{16}(x - 8) \text{ or use of integration or any valid method}$				(6)
$Q_1 = \sqrt{8} = 2.828 \text{ and } Q_3 = 8 - \sqrt{8} = 5.171 \text{ awrt } 2.83 \text{ and awrt } 5.17 \text{ A1}$ (5) $(6) 50\% \text{ lies between } Q_1 \text{ and } Q_3$ $\text{Statistician's claim: } P\left({}^{1}4' - \sqrt{\frac{8}{3}} < X < {}^{1}4' + \sqrt{\frac{8}{3}} \right) = P\left(2.37 < X < 5.63\right) \text{ M1}$ $\text{as this is outside } Q_1 \text{ and } Q_3, > 0.5 / \text{ statistician's claim is correct*}$ $\text{Or} P\left(2.37 < X < 5.63\right) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ $(2) \text{Notes} \text{Total 15}$ $\text{(a)} \text{B1*} \text{Allow any correct equivalent method. E.g. } \frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}, \text{ integration, use of gradients, etc.}}$ $\text{Answer is given so a complete correct method with no incorrect working must be seen}$ $\text{(b)} \text{B1} \text{Cao}$ $\text{M1} \text{Use of equation of line to find } c \text{ e.g. } y - 0 = -\frac{1}{16}(x - 8) \text{ or use of integration or any valid method}$	(d)	$\frac{1}{2} \times Q_1 \times \frac{1}{1}$	$\frac{1}{6} \times Q_1 = \frac{1}{4}$ or $\int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$	M1
(e) 50% lies between Q_1 and Q_3 Statistician's claim: $P\left({}^{1}4^{1} - \sqrt{\frac{8}{3}} < X < {}^{1}4^{1} + \sqrt{\frac{8}{3}} \right) = P(2.37 < X < 5.63)$ as this is outside Q_1 and Q_3 , $> 0.5/$ statistician's claim is correct* or $P(2.37 < X < 5.63) = 0.6498 > 0.5/$ statistician's claim is correct* (2) Notes Total 15 (a) B1* Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x - 8)$ or use of integration or any valid method		$Q_1 = \sqrt{8} =$	= 2.828 or $Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 or awrt 5.17	A1
(e) 50% lies between Q_1 and Q_3 Statistician's claim: $P\left({}^{1}4' - \sqrt{\frac{8}{3}} < X < {}^{1}4' + \sqrt{\frac{8}{3}} \right) = P(2.37 < X < 5.63)$ as this is outside Q_1 and Q_3 , > 0.5 / statistician's claim is correct* or $P(2.37 < X < 5.63) = 0.6498 > 0.5$ / statistician's claim is correct* (2) Notes Total 15 Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x - 8)$ or use of integration or any valid method		$Q_1 = \sqrt{8} =$	= 2.828 and $Q_3 = 8 - \sqrt{8} = 5.171$ awrt 2.83 and awrt 5.17	
Statistician's claim: $P\left({}^{1}4' - \sqrt{\frac{8}{3}} < X < {}^{1}4' + \sqrt{\frac{8}{3}} \right) = P\left(2.37 < X < 5.63 \right)$ as this is outside Q_1 and Q_3 , $> 0.5/$ statistician's claim is correct* or $P\left(2.37 < X < 5.63 \right) = 0.6498 > 0.5/$ statistician's claim is correct* (2) Notes Total 15 Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x - 8)$ or use of integration or any valid method				(3)
as this is outside Q_1 and Q_3 , > 0.5 / statistician's claim is correct* or P(2.37 < X < 5.63) = 0.6498 > 0.5 / statistician's claim is correct* (2) Notes Total 15 Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x - 8)$ or use of integration or any valid method	(e)			
or $P(2.37 < X < 5.63) = 0.6498 > 0.5 / \text{ statistician's claim is correct*}$ (2) Notes Total 15 Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y - 0 = -\frac{1}{16}(x - 8)$ or use of integration or any valid method		Statisticia	an's claim: $P\left(\frac{4}{-}\sqrt{\frac{8}{3}} < X < \frac{4}{+}\sqrt{\frac{8}{3}}\right) = P(2.37 < X < 5.63)$	M1
(a) B1* Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y-0=-\frac{1}{16}(x-8)$ or use of integration or any valid method		or A1*		
(a) B1* Allow any correct equivalent method. E.g. $\frac{1}{2} \times 4 \times 4a = \frac{1}{2} \Rightarrow a = \frac{1}{16}$, integration, use of gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y-0=-\frac{1}{16}(x-8)$ or use of integration or any valid method				(2)
gradients, etc. Answer is given so a complete correct method with no incorrect working must be seen (b) B1 Cao M1 Use of equation of line to find c e.g. $y-0=-\frac{1}{16}(x-8)$ or use of integration or any valid method		I		
(b) B1 Cao M1 Use of equation of line to find c e.g. $y-0=-\frac{1}{16}(x-8)$ or use of integration or any valid method	(a)	B1*	gradients, etc.	
M1 Use of equation of line to find c e.g. $y-0=-\frac{1}{16}(x-8)$ or use of integration or any valid method	(b)	R1		l
	(0)			id method
Al Cao correct answer scores M1A1				ia memoa
		A1	Cao correct answer scores M1A1	

(c)	B1	For $E(X) = 4$ This may be seen at any point in the solution	
	M1	For use of $\int x^2 f(x) dx$ $x^n \to x^{n+1}$ for both parts of pdf (ignore limits) ft their values of b and c	
	A1ft	For correct integration of either of the 2 parts, ft their values of b and c	
		For use of correct limits in either part (dep on previous M1)	
	depM1	may be implied by sight of 4 or $\frac{44}{3}$ but not implied by $\frac{56}{3}$	
		allow ft on their values of b and c which you may need to check	
	A1	For complete correct substitution $4 + \left[\left(-64 + \frac{256}{3} \right) - \left(-4 + \frac{32}{3} \right) \right]$ or $\frac{56}{3}$ allow $= 4 + \frac{44}{3}$	
	A1*	Answer is given so need to see use of $Var(X) = E(X^2) - E(X)^2 = \frac{8}{3}$ with values substituted	
		For correct method for either Q_1 or Q_3	
(d)	M1	e.g. $\frac{1}{2} \times Q_1 \times \frac{1}{16} \times Q_1 = \frac{1}{4}$, $\int_0^{Q_1} \frac{1}{16} x dx = 0.25 \rightarrow \frac{Q_1^2}{32} = 0.25$	
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe or awrt 5.17 allow $8-\sqrt{8}$ oe	
	A1	For either awrt 2.83 allow $\sqrt{8}$ oe and awrt 5.17 allow $8-\sqrt{8}$ oe	
(e)	M1	For use of $P(\mu - \sigma < X < \mu + \sigma)$ ft their μ implied by awrt 2.37 and awrt 5.63	
	A1*	Must state that this > 0.5 as it is outside Q_1 and Q_3 Allow '2.83' > '2.37' and '5.16' < '5.63' or a correct probability calculated awrt 0.65 Answer is given so no incorrect working can be seen. If their values are not consistent with the statistician's claim, then A0 here.	