Question	Scheme Ma			
1(a)	The ra	The random variable M is such that $M \sim Po(2)$		
(i)	[P(M,, 3)=]0.8571 awrt <u>0.857</u> B1			
(ii)	P(M6) = 1 - P(M5) M1			
	= 0.0166 (calc 0.016563) awrt 0.0166 A1			
			(3)	
(b)	$Q \sim Po(6)$ M1			
	P(4,, Q,, 7) = P(Q,, 7) - P(Q,, 3)[=0.5928] M1			
	$X \sim B(20, "0.5928")$ and $P(X = 15)$ or ${}^{20}C_{15}("0.5928")^{15}(1 - "0.5928")^{5}$ M ¹			
		A1		
(c)	$H_0: \lambda$	$= 2 \qquad H_1: \ \lambda > 2$	B1	
	$R \sim F$	$P_{O}(5) : P(R10) \text{ or } 1-P(R,, 9)$	M1	
		= 0.0318 <u>or</u> CR: <i>R</i> 10	A1	
	Reject	t H_0 or Significant or in the critical region	M1	
	There is evidence to support the manager's belief /			
	rate of customers arriving at the garage has increased			
	T1		(5)	
(d)	The number of tyres bought is likely not to occur singly/tyres B1			
			(1)	
		Notes	Total 13	
(a)	B 1	awrt 0.857		
	M1	for $1 - P(M_{,,}, 5)$ or $1 - 0.9834$		
	1.1			
	A1	awrt 0.0166 correct answer scores 2 out of 2		
(b)	M1	for writing or using Po(6)		
	M1	for $P(Q_{1}, 7) - P(Q_{1}, 3)$ or 0.7440 – 0.1512 or awrt 0.593		
	M1	For B(20, "0.5928") and P(X = 15) or ${}^{20}C_{15}(p)^{15}(1-p)^5$ (implied by a	awrt 0.068)	
	A1	awrt 0.068		
(c)	D1	for a sum of how others in terms of 2 on 4. Allow 5 instead of 2		
	R1	for correct hypotheses in terms of λ or μ . Allow 5 instead of 2.		
	B1	These must be attached to H_0 and H_1 correctly		
	B1 M1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R,, 9)$		
	B1 M1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R,, 9)$ (may be implied by awrt 0.0318 or correct CR)		
	B1 M1 A1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R,, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR		
	B1 M1 A1 M1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R_{,,}, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR for a correct ft statement consistent with their <i>p</i> -value and 0.05 or with 10 Need not be contentual but there must be no contradiction and the statement) and their CR	
	B1 M1 A1 M1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R,, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR for a correct ft statement consistent with their <i>p</i> -value and 0.05 or with 10 Need not be contextual but there must be no contradicting non- contextual dep on 1 st and 2 nd M1 for a correct conclusion in context which must be) and their CR al comments	
	B1M1A1M1A1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R_{,,}, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR for a correct ft statement consistent with their <i>p</i> -value and 0.05 or with 10 Need not be contextual but there must be no contradicting non- contextual dep on 1 st and 2 nd M1 for a correct conclusion in context which must be r Must use bold words (oe)	0 and their CR al comments ejecting H ₀	
(d)	B1M1A1M1A1	These must be attached to H_0 and H_1 correctly for writing or using $P_0(5)$ and $P(R10)$ or $1-P(R,, 9)$ (may be implied by awrt 0.0318 or correct CR) awrt 0.0318 allow CR: $[R]10$ allow any letter or no letter for CR for a correct ft statement consistent with their <i>p</i> -value and 0.05 or with 10 Need not be contextual but there must be no contradicting non- contextual dep on 1 st and 2 nd M1 for a correct conclusion in context which must be r Must use bold words (oe) for the idea that tyres may be bought in e.g. pairs oe/the idea that tyre sal) and their CR al comments ejecting H_0 es are not	

S2_2024_06_MS

Question		Scheme	Marks	
2(a)	$\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$			
	$45d - 2d^2 - 100 = 150 \text{ or } \frac{3}{10}d - \frac{1}{75}d^2 - \frac{5}{3} = 0 \rightarrow 2d^2 - 45d + 250 = 0*$			
			(2)	
(b)	P(1<	$P(1 < H < 4.5) = \left(\frac{4.5}{6} - \frac{1}{3}\right) - \left(\frac{1}{48}\right) = \frac{19}{48} \text{ or } 0.39583 $		
	$P(1 < H < 1.5) \left[= \left(\frac{1.5^2}{48}\right) - \left(\frac{1}{48}\right) = \frac{5}{192} \text{ or } 0.02604 \right]$			
	P(H	$<1.5 1 < H < 4.5) = \frac{"0.02604"}{"0.3958"}$	M1	
		$=\frac{5}{76}$ or 0.06578 awrt <u>0.0658</u>	A1 (4)	
			(+)	
		$\frac{h}{dt}$ $0 < h, 4$		
		24		
		$\frac{1}{2}$ $4 \le h$ 5	M1	
(c)	[f(h)]	$=]{6}$ 6	M1	
		$\frac{3}{10} - \frac{2}{75}h$ $5 < h$, d	Al	
		0 otherwise		
	(3		(3)	
		Notes	Total 9	
(a)	M1	for $\frac{3}{10}d - \frac{1}{75}d^2 - \frac{2}{3} = 1$		
	A1*	cso at least one step seen before given answer e.g. removing the denominat 3 term quadratic = 0	or or correct	
(b)	M1	correct method to find P(1 < H < 4.5) implied by $\frac{19}{48}$ or awrt 0.396		
	M1	for writing or finding P(1 < H < 1.5) implied by $\frac{5}{192}$ or awrt 0.026		
	M1	for $\frac{p}{"0.3958"}$ where 0		
	A1	awrt 0.0658		
(c)	M1	for one of row 1, 2 or 3 correct. Allow any letters. Condone missing/incorre	ect range	
	M1	for any two rows correct with ranges. Allow any letters and < for ,, signs		
	A1	Fully correct. all the same letter in rows 1 to 3 Allow < for $\gamma\gamma$ signs condone $d = 10$ but not $d = 12.5$		

S2_2024_06_MS

Question		Scheme Marks		
3(a)	A list of all the shops			
			(1)	
(b)	The shop	DS	B1	
			(1)	
(c)	Advanta	ge - A sample is quicker/ cheaper / easier to process	BI	
	Disadvai	ntage – less accurate/ may be biased / may not be representative	BI	
(1)			(2)	
(d)	P(X,, o) or X1	6) = 0.0172 or $P(X 18) = 0.0212$ or $P(X, 17) = 0.9788$ or $X, 6$	M1	
	$\left[P(X, , \cdot) \right]$	6)]=0.0172 <u>and</u> $[P(X 18)]=0.0212$	A1	
	CR: [0,,] <i>X</i> ,, 6 , 18,, <i>X</i> [,, 30]	A1	
			(3)	
(e)	20 is in t	he critical region therefore there is evidence that Jian's belief is incorrect	B1ft	
			(1)	
(f)	$H_0: p =$	0.4 $H_1: p < 0.4$	B1	
	$J \sim B(1$	$50, 0.4) \Rightarrow \approx N(60, 36)$	M1A1	
		(n+0.5) - 60 = 16440	M1	
	P(J,, 4)	$P(Z_{n}, -6 = -2.08333]) = -1.0449$	M1	
		= 0.0188 (calc 0.018610) CR: $J < awrt 49.6$	Al	
	There is	sufficient evidence to suggest that the proportion of shops where the		
	stocktak	ing system is being used incorrectly is less than 0.4/decreased	AI	
			(7)	
		Notes	Total 15	
(a)	B1	for the idea of a list/database(oe) of all shops list of all stocktaking system	ns is B0	
(b)	B 1	for allow shop or store(s)		
(a)		for a correct advantage for a sample on ag allow consus take longer than a so	mnla	
	B 1	e.g. 'a sample is more uncertain' on its own is B0	unpic	
	B1	for a correct disadvantage for a sample oe eg a census is more accurate than	a sample	
		If there is no reference to sample or census assume referring to sample.	•	
		Ignore extraneous non-contradictory comments		
(d)	M1	for one of these probability statements correct <u>or</u> awrt 0.017 <u>or</u> awrt 0.021 <u>o</u> or one correct CR	<u>r</u> awrt 0.98	
	A1	for both probabilities awrt 0.0172 and awrt 0.0212		
	A1	for both CR correct oe e.g. $X < 7$, $X > 17$ ignore any symbol used between	the two	
		CR tails allow any or no letter (do not allow CR stated as probabil	ities)	
(e)	R1ft	for stating 20 is in the CR <u>and</u> give correct statement. Allow the belief in we	ords.	
	DIR	Only ft if their CR is in the form $X_{,,} C_1 \cup X \dots C_2$ (allow as probability state	ements)	
(f)	B1	for both hypotheses compatibility in an - Must be attached to II and II		
	M1	for writing or using N(60)		
	A1	for writing or using N(60, 36)		
		for standardising (allow \pm) using their "60" and "6" with either 46.5. 47 or 4	7.5	
	M1	for CR method $n, n + 0.5$ or $n - 0.5$ and equate to -1.6449 or better		
	M1	for using the correct continuity correction 47.5 or $(n + 0.5)$		
	A1	for awrt 0.019 or CR: $J \le awrt 49.6$ or $J + 0.5 \le awrt 50.1$		
	111	Exact binomial gives 0.01756and scores M0A0M0M0A0		
	A1	dep on previous A1 for a correct conclusion in context using bold word (oe) Do not allow 'number' for 'proportion'		

S2_2024_06_MS

Question		Scheme	Marks	
4(a)	$\frac{10}{50}$ ×	$\frac{9}{49} \left[= \frac{9}{245} * \right] $ B1cso		
			(1)	
(b)	numl	ber of counters numbered $4 = 10$ numbered $7 = 15$ numbered $10 = 25$	M1	
	M = -	4, 5.5, 7, 8.5, 10	B1	
	D(1)	10 15 6		
	P(M	$I = 5.5 = 2 \times \frac{1}{50} \times \frac{1}{49} = \frac{1}{49}$	M1	
	Р(<i>М</i>	$(1 = 7) = 2 \times \frac{10}{50} \times \frac{25}{49} + \frac{15}{50} \times \frac{14}{49} \left[= \frac{71}{245} \right]$	M1	
	-			
	P(M	$(=8.5) = 2 \times \frac{1}{50} \times \frac{1}{49} = \frac{1}{49}$	M1	
	P(<i>M</i>	$(\ell = 10) = \frac{25}{50} \times \frac{24}{49} \left[= \frac{12}{49} \right]$		
	т	4 5.5 7 8.5 10		
	Р(M = m) 9 6 71 15 12		
	1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al	
		(awrt) (awrt) (awrt) (awrt) (awrt)		
			(6)	
(c)	(1	$\left(\frac{9}{245}\right)^n < 0.15$	M1	
	n=5	50.689 <u>or</u> $n = 50$ is 0.1539 <u>or</u> $n = 51$ is 0.148 <u>or</u> $[n >] \frac{\log 0.15}{\log(1 - \frac{9}{245})}$	M1	
	n=5	Δ1		
		(3		
		Notes	Total 10	
(a)	B1	A correct equivalent expression		
(b)	M1	For 10, 15 and 25 - may be seen in (a) or may be seen in probability expression	ons	
	B1	all means correct with no incorrect extra unless they have a probability of 0		
	M1	One correct probability (not including 9/245)		
		1 wo correct probabilities (not including 9/245)		
	IVII	fully correct need not be in a table but must have correct probability associat	ed with	
	A1	correct mean		
	60	With replacement using probabilities $\frac{10}{10}, \frac{15}{10}, \frac{25}{10}$ gives $\frac{3}{10}, \frac{29}{100}, \frac{3}{10}, \frac{1}{10}$		
	SC	50 50 50 25 100 10 4		
	Л/Г1	can score maximum MIBIMI(two correct)MII(four correct)MUA0		
(C)	IVII	Setting up a correct inequality (allow any inequality or equal sign here) for a value $n = awrt 50.7$ or awrt 0.154 or awrt 0.149		
	M1	or correct log expression for n		
	A 1	51 can do not allow $n = 51$		
1	AL			

Question		Scheme S2_	2024k96_1	MS
5(a)	D ~ F	3(8,0.05)	M1	
			M1	
	P(D).	$\frac{1}{2} = 1 - P(D_{2}, 1)$	A 1	
		awit 0.03 72 (cale 0.037244)	(3)	
(b)	$E \sim P$	Po(50)	M1	
	P(E	$r = 45) = \frac{e^{-50} \times 50^{45}}{45!}$	M1	
		= 0.0458262 awrt <u>0.0458</u>	A1	
			(3)	
(c)	P(T >	$(-16) = \frac{50 - 16}{50 - 10}$ or $1 - \frac{16 - 10}{50 - 10}$	M1	
		= 0.85	A1	
			(2)	
(d)	P(<i>T</i> <	(40) = 0.75	M1	
	$F = n\iota$	umber of customers ringing in the next 40 seconds has $F \sim Po(4)$		
	P(F =	$= 0) [= e^{-4} = awrt 0.0183]$	M1	
	P(Jia r	reaches the correct department and $F = 0 = 0.75 \times 0.95 \times e^{-4}$	dM1	
	1 (01001	= 0.013049 awrt <u>0.013</u>	A1	
			(4)	
		Notes	Total 12	
(a)	M1	for writing or using $B(8, 0.05)$	·	
	M1	for writing or using $1 - P(D_{*}, 1)$		
	A1	awrt 0.0572		
(b)	M1	for writing or using Po(50)		
	M1	for $\frac{e^{-\lambda} \times \lambda^{45}}{45!}$ with any value of λ (may be implied by awrt 0.046)		
	A1	awrt 0.0458		
(c)	M1	for a correct method to find $P(T > 16)$		
	A1	for 0.85 oe correct answer scores 2 out of 2		
(d)	M1	for 0.75 oe		
	M1	for attempting $P(F = 0)$ from Po (λ) allow any λ		
	dM1	dep on previous M1"0.75"×0.95×" e^{-4} "		
	A1	awrt 0.013		

Question	Scheme S2_	2024ark6_MS
6(a)	$\int_{-1}^{3} (a+bx) dx = 1$ or trapezium drawn	M1
	$\left[ax + \frac{bx^2}{2}\right]_{-1}^{3} [=1] \text{ or } \frac{3-(-1)}{2}((a-b)+(a+3b))[=1]$	A1
	$\left[3a + \frac{9b}{2}\right] - \left[-a + \frac{b}{2}\right] = 1 \text{oe} \underline{\text{or}} \frac{4}{2}(2a + 2b) = 1 \qquad \Longrightarrow 4a + 4b = 1*$	A1*
(1)(')		(3)
(b)(1)	$\int_{-1}^{3} ax^{2} + bx^{3} dx = \left[\frac{ax^{3}}{3} + \frac{bx^{4}}{4}\right]_{-1}^{3}$	M1A1
	$\left[\frac{27a}{3} + \frac{81b}{4}\right] - \left[-\frac{a}{3} + \frac{b}{4}\right] = \frac{17}{5}$	dM1
	$\frac{28}{3}a + 20\left(\frac{1-4a}{4}\right) = \frac{17}{5}$	M1 A1
		(5)
(ii)	$-\frac{32}{3}a = -\frac{8}{5} \text{ oe} \qquad \frac{28}{3}\left(\frac{1-4b}{4}\right) + 20b = \frac{17}{5}$	M1
	$b = \frac{1 - 4 \times 0.15}{4} \Longrightarrow b = 0.1^*$	A1*
		(2)
(c)	0.45	M1 A1
		(2)
(d)	$\begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} - \begin{bmatrix} -"0.15" + \frac{0.1}{2} \end{bmatrix} = 0.2 \begin{bmatrix} 0.45 + \frac{0.9}{2} \end{bmatrix} - \begin{bmatrix} "0.15"k + \frac{0.1k^2}{2} \end{bmatrix} = 0.8$ $\begin{bmatrix} \text{or} \\ \frac{1}{2}(k+1)(0.05+0.1k+0.15) = 0.2 \begin{bmatrix} \frac{0}{2} \\ \frac{1}{2}(3-k)(0.15+0.1k+0.45) = 0.8 \end{bmatrix}$	M1
	$0.05k^2 + 0.15k - 0.1 = 0$	A1
	$k = \frac{-0.15 \pm \sqrt{0.15^2 - 4 \times 0.05 \times (-0.1)}}{2 \times 0.05}$	M1
	= 0.56155 awrt <u>0.562</u>	A1
		(4)
		Total 16

		Notes S2_2024_06_MS	
(a)	for an attempt to integrate $a + bx$ with either $a \rightarrow ax$ or $x \rightarrow x^2$ ignore limits M1 or for trapezium drawn with parallel sides correct in terms of a and b (may be implied b)		
	correct area of trapezium)		
	A1	correct integration or correct area of trapezium	
	A1*	cso (correct limits seen substituted or correct area) equated to 1 which leads to final given answer	
		Mark b(i) and b(ii) together	
(b)(i)	M1	for an attempt to integrate $ax^2 + bx^3$ with either $x^2 \rightarrow x^3$ or $x^3 \rightarrow x^4$ ignore limits	
	A1	correct integration ignore limits	
	dM1	dep on previous M1. Substituting in correct limits and equating to 17/5	
	M1	substituting $4b = 1 - 4a$ oe	
	A1	a correct equation	
(ii)	M1 solving their equation in <i>a</i> in the form $na = c$ where $n \neq 1$ <u>or</u> a correct equation in terms of <i>b</i> M0 for $a = 0.15$ without working or for using $b = 0.1$ in $4a + 4b = 1$ to find <i>a</i>		
	A1*	for a correct un-simplified expression for <i>b</i> leading to given answer $b = 0.1$ * which must	
()		come from correct working	
(c)	M1	correct shape (straight line with positive gradient) must be above x-axis and must be between -1 and 3 gignore graph before -1 and after 3	
	A1 correct with both correct x-axis labels -1 and 3 and at least 1 correct y-axis label from 0.05, 0.15 or 0.45 ignore graph before -1 and after 3		
(d)	M1	for a correct equation using integration or area need not be simplified. use of limit $k + 1$ instead of k in integration is M0	
	A1	correct 3 term quadratic (oe)	
	M1	correct method seen to solve their 3 term quadratic or awrt 0.562 or awrt – 3.56	
	A1	awrt 0.562 with other solutions eliminated if given Allow $\frac{\sqrt{17}-3}{2}$	