Question Number		Scheme	Marks			
1 (a)	[Mean =] 2.95					
		$nce = \frac{2091}{180} - ("2.95")^2$	B1 M1			
		$= 2.914$ ($s^2 = 2.930$) awrt 2.91 (2.93)	Al			
			(3)			
(b)	The me	e mean is close to the variance				
(c)	W~ Po	(3)	(1)			
(i)		$(3) = \left[1 - P(W_{,,}2) = 0.5768\right]$ awrt 0.577	M1 A1			
(ii)	$\left[P(4 < $	$\langle W < 8 \rangle = \overline{P(W, 7) - P(W, 4)}$ or $P(W=5) + P(W=6) + P(W=7)$	M1			
		= 0.1728 awrt 0.173	A1			
		0.1720 uwit 0.175	(4)			
(d)	X~N(2	1,21)	B1			
	$\left[P(X < 19) = \right] P\left(Z, \frac{18.5 - 21}{\sqrt{21}} \right) \left[= -0.5455 \right]$ or					
	$\left[P(X > 23) = \right] P\left(Z \dots \frac{23.5 - 21}{\sqrt{21}}\right) [= 0.5455]$					
	$= 0.2912 \ (calc \ 0.29268)*$					
			(5)			
(e)	· · · ·	13, "0.29")	M1			
	$\left[P(Y=5) = \right]^{13} C_5 ("0.29")^5 (1-"0.29")^8 = 0.170465 \text{ (calc } 0.17317) \text{ awrt } 0.17$					
		NT-4	(3)			
(a)	B1	Notes cao allow exact equivalents	Total 16			
(u)	M1 Ft their mean. Using $\frac{\sum fx^2}{180}$ - (their mean) ² or $\frac{180}{179} \left(\frac{\sum fx^2}{180} - (\text{their mean})^2 \right)$					
	Allow with a square root – may be implied by awrt 1.71					
	A1cso	awrt 2.91 (2.93)				
(b)	B1	cao – Allow equivalent wording. Allow mean = variance. If no values/non compatible calculated, then B0. Condone the use of 'closed' for 'close'	values			
(c)(i)	M1	for $1-P(W_{,,2})$ or $1-0.4232$				
	A1	awrt 0.577				
(ii)	M1 for $P(W, 7) - P(W, 4)$ or $P(W=5) + P(W=6) + P(W=7)$					
	or 0.9881 - 0.8153 or 0.1008 + 0.0504 + 0.0216					
(4)	A1 P1	awrt 0.173 for writing or using N(21,21). May be seen in a standardisation expression.				
(d)	B1		2 23 5 24			
	M1	for standardisation (±) using their mean and sd. Allow 17.5, 18, 18.5, 19, 19.5, 22.5, 23, 23.5, 24, 24.5				
	M1	for using 19 ± 0.5 or 23 ± 0.5				
	A1	for a fully correct standardisation expression Implied by awrt ± 0.546				
	A1* awrt 0.291 or 0.293 from correct working seen					
		M1 for writing or using B(13, 0.29) ft their 0.29 (Must be 2 sf or better) or for $(p)^5(1-p)$				
(e)	M1					
(e)		ft their 0.29 (Must be 2 sf or better). Condone B(0.29, 13)				
(e)	M1 M1 A1					

Question Number	Scheme					
2 (a)	$\left[P(D < 108) = \right] P\left(Z < \frac{108 - 112.4}{\sigma} \right) = 0.05$					
	$\Rightarrow \frac{108 - 112.4}{\sigma} = -1.6449$					
		$\sigma = 2.6749 \text{ days} (\text{calc } 2.67501)$ awrt 2.67/2.68	A1 (2)			
(b)	$J \sim B$	(25, 0.05)	(3)			
		(4) =]1 - P(J, 3) = 1 - 0.9659	M1			
		= 0.0341 (calc 0.034090) awrt 0.0341	A1 (2)			
(c)	$T \sim Po[200 \times "0.0341"] = 6.82$ (calc 6.8181)					
	$\left[P(T \dots 2) = \overline{]1 - P(X, 1)} = 1 - \left(e^{-"6.82"} + e^{-"6.82"} \times "6.82" \right) \right]$					
		$= 0.99146 \operatorname{calc} (0.99144)$ awrt 0.991	dA1			
	N/1	Notes 108 for standardisation using 108 (Condona 107.5) 112.4 and σ set equal to σ where 1.5 σ	Total 8			
(a) (i)	M1	for standardisation using 108(Condone 107.5), 112.4 and σ set equal to z where $1.5 < z $	~2.3			
	M1	for correct equation $awrt - 1.6449$ (Allow $awrt 1.6449$ if compatible with their equation)				
	A1	awrt 2.67/2.68 NB M1 M0 A1 is possible				
(b)	M1					
	A1 awrt 0.0341					
(c)	M1	for writing or using correct Poisson model ft their part (b) May be implied by 0.00853(73				
	N/1	for writing or using $1 - (e^{-\lambda^{"}} + e^{-\lambda^{"}} \times \lambda^{"})$ where $1 < \lambda < 200$ (may be implied by awrt 0.991)				
	M1	Allow $1-P(X, 1)$ if Poisson distribution is stated or used				
	dep on both method marks being awarded awrt 0.991dA1(NB Binomial gives awrt 0.992 and if no working shown awrt 0.992 will gain M0M0A0)					
	u/1	Allow 0.9915 if both M marks are awarded	,			

Question Number		Scheme					
3 (a)	The vacuum tubes shatter independently						
		bability of a vacuum tube shattering is constant	B1				
		· · · · · · · · · · · · · · · · · · ·	(2)				
(1-)	$C \sim B(1)$	5,0.35) plus $[P(C_{,,},9] =]0.0142 \text{ or} [P(C_{}10) =]0.0124 \text{ or}$	M1				
(b)	[P(C,,	9) =]0.9876	101 1				
	Critical	regions $[0, ,] C, 1$ or $10, , C [, 15]$	M1				
	[0,,] C	$C_{,,1}$ and 10, $C_{,,15}$ plus	A 1				
	P(C ,, 9	$P(C \dots 10) = 0.0142 \text{ and } P(C \dots 10) = 0.0124$	A1				
			(3)				
(c)	0.0266		B1ft				
			(1)				
(d)	4 is not	in the CR therefore] there is no evidence to reject Rowan's belief	B1ft (1)				
(e)	<i>F</i> ~B(40	0.35)	(1)				
(C)		0.35 and $H_1: p < 0.35$	B1				
	P(F, , 8) = 0.0303 or CR F, 8						
	· · · · · · · · · · · · · · · · · · ·	It evidence to reject H_0 or significant or 8 lies in the Critical region	M1A1 M1				
		sufficient evidence to support that the proportion of type <i>B</i> vacuum tubes that	A1				
	shatter when exposed to alternating high and low temperatures is less than 35%						
		Notes	Total 12				
(a)	B1	for one correct reason which must mention tube(s) and shatter/shattering or 2 correct reasons not in context					
	B1	for 2 correct reasons not in context for 2 correct reasons which must mention tube(s) and shatter/shattering at least once					
(b)	for using the correct distribution to find awrt 0.0142 or awrt 0.0124 or awrt 0.988						
(0)	1711	Allow B(15, 0.35) is written and one of awrt 0.014 or awrt 0.012 or awrt 0.99 is seen					
	N/1	for lower CR or C , 1 oe e.g. $C < 2$					
	M1 or upper CR $_{C10}$ oe e.g. $_{C>9}$ Allow other notation and any letter(s) for CR						
		Do not allow CR written as a probability statement for both CR correct with the relevant probabilities (3 sf and must be seen in part (b)). Do not					
	A1	allow CR written as a probability statement	20 1101				
(c)	B1ft	for awrt 0.0266 or 2.66% or ft the sum of the probabilities in (b) for "their 2 critical reg	gions" if				
		seen. If no probabilities for their CR given then the answer must be 0.0266					
		for a correct statement consistent with their CR Must mention Rowan/his/her or a correct statement on Rowan's belief with the words highlighted in bold e.g. no evidence					
(d)	B1ft	suggest that the proportion/probability/number/amount (allow 35% as proportion)					
		that shatter has changed oe					
(e)	B1	for both hypotheses correct in terms of p or π					
	M1	for using or writing $P(F, 8)$ or awrt 0.0303					
	A1						
	N/T1	for a correct conclusion – need not be in context. If their probability or CR. Ignore hyp					
	M1 do not allow contradicting non contextual comments. May be implied by a correct contextual statement on its own						
		for a correct conclusion – must be in context, with words highlighted in bold. It their p	orobability				
	A1 or CR only. Independent of hypotheses. Do not allow contradicting statements. Allow						
	1	probability/number/amount/35% for proportion. Allow decreased for less than 35%					

Number		
4 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 (2)
(b)	$\begin{bmatrix} P(G_{,,2}) =]1 - 2 \times \frac{3}{20} [= 0.7] \text{ or } \frac{1}{2} \times 3 \times \left(\frac{2}{15} + \frac{1}{3}\right) \text{ or } \frac{1}{15} \int_{-1}^{2} (g+3) dg [= 0.7] \text{ or} \\ \frac{1}{30} \times 2^{2} + \frac{1}{5} \times 2 + \frac{1}{6} [= 0.7] \\ \text{or} \\ \begin{bmatrix} P\left(G_{,,} \frac{1}{2}\right) \end{bmatrix} = \frac{1}{2} \times 1.5 \times \left(\frac{2}{15} + \frac{3.5}{15}\right) [= 0.275] \text{ or } \frac{1}{15} \int_{-1}^{0.5} (g+3) dg [= 0.275] \text{ or} \\ \frac{1}{30} \times 0.5^{2} + \frac{1}{5} \times 0.5 + \frac{1}{6} [= 0.275] \\ \text{or} \\ \begin{bmatrix} P\left(\frac{1}{2}, G_{,,2}, 2\right) = \right] \frac{1}{2} \times 1.5 \times \left(\frac{7}{30} + \frac{1}{3}\right) [= 0.425] \text{ or } \frac{1}{15} \int_{0.5}^{2} (g+3) dg [= 0.425] \text{ or} \\ \frac{1}{30} \times (2^{2} - 0.5^{2}) + \frac{1}{5} \times (2 - 0.5) [= 0.425] \end{bmatrix}$	M1
	$\left[P(1,, 2G,, 6 G,, 2) = \right] \frac{P\left(\frac{1}{2}, G, 2\right)}{P(G,, 2)} = \frac{0.425}{0.7} \text{ or } 1 - \frac{0.275}{0.7} \text{ oe}$	M1M1
	$=\frac{17}{28}$ or 0.607 awrt 0.607	A1 (4)
(c)	$\left[E(H^2) = \right] 2.4 + 12^2 \left[= 146.4 \right]$	M1
	$\left[E(G) = \right] \int_{-1}^{2} \frac{1}{15} \left(g^2 + 3g \right) dg + \int_{2}^{4} \frac{3}{20} g dg$	M1
	$\left[E(G) = \right] \left(\frac{1}{15} \left(\frac{1}{3} g^3 + \frac{3}{2} g^2 \right) \right)_{-1}^2 + \left(\frac{3}{40} g^2 \right)_{-1}^4$	M1
	$=\frac{1}{15}\left(\frac{8}{3}+\frac{12}{2}+\frac{1}{3}-\frac{3}{2}\right)+\left(\frac{48}{40}-\frac{12}{40}\right)[=1.4]$	dM1
	$\left[E(2H^2 + 3G + 3) = \right] 2 \times "146.4" + 3 \times "1.4" + 3$	M1
	= 300	A1 (6) Total 12

		Notes		
(a)	M1	for correct shape $\left(g = \frac{3}{20} \text{ must be below } \frac{1}{3}\right)$ with the lines not joining at $x = 2$ and none below/touch the <i>x</i> -axis. Ignore any broken/dotted lines drawn		
	A1	for fully correct graph with labels on the <i>x</i> axis		
(b)	M1	For a correct method to find P(G,, 2) or P $\left(G, \frac{1}{2}\right)$ or P $\left(\frac{1}{2}, G, \frac{2}{2}\right)$ May be implied by $0.7 / \frac{7}{10}$ or $0.425 = \frac{17}{40}$ or $0.275 / \frac{11}{40}$		
	M1	for $\frac{p}{0.7}$ where $0 or \frac{0.425}{q} where 0.425 < q < 1 or 1 - \frac{0.275}{r} where 0.275 < r < 1Allow un-simplified probabilities$		
	M1	For $\frac{P\left(\frac{1}{2}, G, 2\right)}{P(G, 2)}$ or a correct ratio of probabilities		
	A1	$\frac{17}{28}$ oe or awrt 0.607		
(c)	M1	for a correct method to find $E(H^2)$		
	M1	for realising $\int x f(x) dx$ on both functions and adding together. Ignore limits		
	M1	for attempting to integrate $(x^n \rightarrow x^{n+1})$ at least one part of $xf(x)$		
	dM1 dep on previous M1 being awarded. For use of correct limits in one part of $xf(x)$ shown, then this may be implied by 0.5 or 0.9 or 1.4. If integration is incorrect them must be shown.			
	M1	For using $2 \times$ "their $E(H^2)$ "+3" their $E(G)$ +3, provided $E(H^2)$ and $E(G)$ have been shown. NB You may have to check their answer if no working is shown for $2 \times$ "their $E(H^2)$ "+3" their $E(G)$ +3		
	A1	Cao		

Question Number		Scheme					
5(a)	$\frac{\left(a+6\right)^2}{12} = 27$						
	$a = \sqrt{27}$	$\overline{\times 12} - 6 \Longrightarrow 12^*$ or $a^2 + 12a - 288 = 0 \Longrightarrow a = 12^*$	A1*				
			(2)				
(b)(i)	$\frac{12-b}{18} =$	$\frac{3}{5}$ or $\frac{b+6}{18} = \frac{2}{5}$	M1				
		b = 1.2	A1				
			(2)				
(ii)	P(-6 < 1/	$V < "0.6") = \frac{"0.6"+6}{18}$	M1				
	$=\frac{11}{30}$ or 0.3666						
			(2)				
(c)	Let C be	the point where the wood is cut and x is the distance AC					
	$\frac{x}{2}$ and $\left(\frac{160-x}{2}\right)$ $L+W=80$ and $LW=975$						
	$\frac{x}{2} \times \left(\frac{160 - x}{2}\right) = 975 \implies x = 30 \text{ or } 130 \qquad L(80 - L) = 975 \implies L = 15 \text{ or } 65$						
	$P("30" < x < "130") = \frac{"130" - "30"}{160} \left[= \frac{5}{8} \right] \text{ oe } \left[P("15" < x < "65") = \frac{"65" - "15"}{80} \left[= \frac{5}{8} \right] \text{ oe } \right]$						
		$=\frac{5}{8}$ oe					
		Notes	Total 10				
(a)	M1	for setting up the correct equation. Do not allow verification					
	A1*	for an un-simplified expression for <i>a</i> leading to $a = 12$ or for a correct $3TQ = 0$ leading to $a = 12$ Condone any letter for <i>a</i>					
(b)(i)	M1	for setting up the correct equation					
	A1						
(ii)	M1	for a correct method. Do not ISW					
	A1ft	ft their value for <i>b</i> , provided the answer is between 0 and 1					
(c)	(c) M1 For both expressions seen. Allow any letters e.g. $\frac{y}{2}$ for $\left(\frac{160-x}{2}\right)$						
		May be implied by a correct equation for the area					
	M1	for a correct equation for area in terms of any letter. Condone an inequality	.1 1 11				
	$dM1 \qquad dep on previous method mark awarded. For a fully correct method ft their x values provided at to 160 or 80 Do not ISW$						
	A1 Cao						

Question Number	Scheme						Marks	3
6(a)	8, 11, 14, 17, 20				M1			
	[P(even	$=]\frac{1}{5}$ and $[P(odd$	$=]\frac{4}{5}$				M1	
	$\Big[P \Big(X = 8 \Big]$	$B = \left[\left(\frac{4}{5}\right)^4 \text{ or } \left[P \right] \right]$	$K = 20) = \left] \left(\frac{1}{5}\right)^2$	ŀ			M1	
	$\left[P(X=1) \right]$	$1) =]4 \times \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^3$	or $\left[P(X=17) \right]$	$=$] $4 \times \left(\frac{4}{5}\right) \left(\frac{1}{5}\right)$) ³		M1	
	$\Big[P \big(X = 1 \Big]$	$(4) = \int {}^{4}C_{2} \times \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$	$\left(\frac{4}{5}\right)^2$				M1	
	X	8	11	14	17	20]	
	P(X=x)		$\frac{256}{625}$ (0.4096)	$\frac{96}{625}$ (0.1536)	$\frac{16}{625}$ (0.0256)	$\frac{1}{625}$ (0.0016)	A1	
		(011030)	(01.020)	(01000)	(0.0200)	(0.0010)		(6)
(b)	$1 - (1 - "0.1536")^n > 0.95$ or $("0.8464")^n < 0.05$					M1		
	$n > 17.96$ or $n > \frac{\log(0.05)}{\log("0.8464")}$ or $n > \log_{"0.8464"}(0.05)$					M1		
	<i>n</i> = 18		,				A1	
							`	(3)
(-)	M1	E	No				Total 9	•
(a)	M1 M1	For at least 2 scores for writing or using				itsz		
			a a			lity		
	M1	for p^4 where $0 < p$						
	M1	for $4 \times (1-p) p^3$ w						
M1 for $6 \times (1-p)^2 p^2$ where $0 or probabilities that add to 1 (at least$								5)
	A1	1 for all 5 probabilities correct and associated with the correct values. Need not be in a table but probabilities must be attached to the correct total						
(b)	M1	for using $1-(1-P(Y=0))^n > 0.95$ allow = instead of $>/\geq$. condone $ or allow for at least 2$						
		trials for <i>n</i> between 10 and 20 ft their $P(X = 14)$						
	M1 for $n > awrt 17.96$ or $n > \frac{\log(0.05)}{\log("0.8464")}$ ft their 0.8464 or $n > \log_{"0.8464"}(0.05)$ ft					t their		
	1488	0.8464 or for the two trials for $n = 17$ and 18						
	Allow = instead of >/≥. condone ≤ May be implied by a correct answer ft their 0.3</th A1Cao (Do not allow any inequality for this mark)				0.8464			
	A1	Cao (Do not allow a	iny inequality fo	r unis mark)				

Question Number		Marks					
7(a)	$f(x) = [k](a + 3bx^2 - 4x^3)$				M1		
	[k](6bx	$-12x^2$) = 0			M1		
	9 <i>b</i> -27	$=0 \Longrightarrow b=3$ or 6×10^{-1}	$3 \times 1.5 - 12 \times 1.5^2 = 0 \Longrightarrow \therefore b = 3$	3 *	A1*		
					(3)		
(b)	a+3-1	$-4 = 0$ oe $[\Rightarrow a =$	2]		B1*		
					(1)		
(c)		$k(2 \times$	$2+3\times 2^3-2^4-4\Big)=1 \left[\Longrightarrow k\right]$	$r = \frac{1}{8}$	M1		
		F(x) = 0.5	$\mathbf{F}(x) = 4$	$\mathbf{F}(x) = 0$			
		(.4) = 0.3988 (.5) = 0.5078	F(1.4) = 3.1904 F(1.5) = 4.0625	F(1.4) = -0.8(096) F(1.5) = 0.06(25)	M1A1		
	0.39	9 < 0.5 < 0.508	3.1904 < 4 < 4.0625	-0.8(096) < 0 < 0.06(25)			
		ore, the median lies veen 1.4 and 1.5	therefore, the median lies between 1.4 and 1.5	therefore, the median lies between 1.4 and 1.5	A1		
	ALTERNATIVE M1A1A1 for $F(x) = 0$						
	$x_1 = 2.91$ $x_2 = 1.49$ $x_3 = -0.70$ So $x = 1.49$ as $1 \le x \le 2$						
	1.4 < 1.49 < 1.5 [therefore, the median lies between 1.4 and 1.5]						
			Notes		Total 8		
(a)	M1		fferentiate $x^n \to x^{n-1}$ Condone		2 nd M1)		
	M1		ntiating twice and equating to ze	ŭ			
	A1*		leading to a correct linear equation $F(1) = 0$ to formula $F(2) = 0$				
(b)	B1*	for correctly using $F(1) = 0$ to form an equation in <i>a</i> (May be seen in part (a)) and substitution of $b = 3$					
(c)	M1	for using $F(2) = 1$ to form a correct equation in terms of k only. May be seen in any part of the question					
	M1	M1 For a calculation of $F(1.4)$ or $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or better) (Allow $F(1.4) = awrt 3.190k$ or $F(1.5) = awrt 4.063k$)					
	A1For a calculation of $F(1.4)$ and $F(1.5)$ correct to 2 sf (If $F(x) = 0$ used then allow 1 sf or betterdA1Dependent on previous A1. For a correct comparison and conclusion. Allow comparisons in words e.g. For $F(X) = 0$ a comment about a change in sign implies a comparison with 0						
		ALTERNATIVE					
	M1		en equation. May be implied by		11		
	A1	For $x = 1.49$ identified as being in the range specified by the CDF. May be implied by rejecting the other solutions					
	dA1 Dependent on previous A1. For a correct comparison and conclusion						

Examples of other acceptable comparisons for 0.5

- $F(1.4) \le 0.5 \le F(1.5)$, Median lies between the range
- $F(1.4) \le F(median) \le F(1.5)$, so median lies between 1.4 and 1.5
- $F(1.4) \le F(Q2) \le F(1.5)$, therefore Q2 lies between 1.4 and 1.5

F(1.4) < F(m) < F(1.5), 1.4 < m < 1.5

F(1.4) < 0.5, F(1.5) > 0.5, so median of X lies between 1.4 and 1.5

Allow equivalent comparisons for 4 and 0