S2_2023_10_MS

Question Number		Scheme			
1 (a) (i)	$X \square B(14, 0.2)$				
	$\int \mathbf{P}(X =$	2) = $]^{14}C_2 \times 0.2^2 \times 0.8^{12}$		M1	
		= 0.2501	awrt 0.2501	A1	
(ii)	$X \square \mathbf{B}($	25,0.2)			
	P(<i>X</i> >	$3 = 1 - P(X_{,,} 3) = 1 - 0.2340$ or 1	-(0.0038 + 0.0236 + 0.0708 + 0.1358)	M1	
		= 0.7660	awrt 0.766	A1	
				(4)	
(b)(i)	[np=6]	\Rightarrow] $n = \frac{6}{0.2}$		M1	
		= 30		Al	
				(2)	
(ii)	$Y \square B(n, 0.2)$ we require $P(Y \ge 1) > 0.95$				
	$1 - P(Y = 0) > 0.95 \Longrightarrow P(Y = 0) < 0.05$				
	$\left[{\left[{^n C_0 imes 0.2^0 } \right] imes 0.8^n < 0.05} ight.$				
	$0.8^{14} = 0.04398[< 0.05] \qquad \qquad n > \frac{\ln 0.05}{\ln 0.8} \Longrightarrow n > 13.425$				
		n = 14			
		No	otes	Total 10	
(a) (i)	M1	For writing or using ${}^{14}C_2 \times 0.2^2 \times 0.8^{12}$	² (Allow 91 for ${}^{14}C_2$)		
	A1	awrt 0.2501 NB 0.2501 with no wor	king scores M1A1		
(ii)	M1	For writing or using $1 - P(X_{,,} 3)$			
	A1 awrt 0.766 NB awrt 0.766 with no working scores M1A1				
(b)(i)	M1	For use of $np = 6$ e.g $0.2n = 6$ (Allow	v ≥)		
	A1	Сао			
(ii)	ii) M1 For writing or using $P(Y1) = 1 - P(Y = 0)$ (Allow $P(Y1) = 1 - P(Y, 0)$				
	M1	1 For $0.8^n < 0.05$ oe (Allow = or \leq)			
	dM1 Dependant on previous M1 For substitution of <i>n</i> (allow $0.8^{13} = 0.05497$) or rearranging to $n >$ (Allow = or			≥)	
		If using logs allow any base e.g. $n > $	$\log_{0.8} 0.05$		
	A1 Cao				

S2_2023_10_MS

Question Number		Scheme Marks					
2 (a)	[Mode =	4					
2 (u)				B1 (1)			
(b)	$\left[a\int_0^4 x^3 \mathrm{d} x\right]$	$x = \frac{1}{2} \Rightarrow \left] a \left[\frac{x^4}{4} \right]_0^4 = \frac{1}{2}$ $\Rightarrow a = \frac{1}{128} *$					
	$64a = \frac{1}{2}$	$\Rightarrow a = \frac{1}{128} *$		A1*			
				(2)			
(c)	$0.5 \\ 0.5 \\ 0.5 \\ d \\ 1 \\ 2 \\ 2 \\ (d-4) = \frac{1}{2} \text{or} \frac{1}{2} \\ \frac{1}{2} \\ (d-4) + \int_{0}^{4} ax^{3} dx = 1$						
	d = 6			A1			
	<i>u</i> = 0			(2)			
(d)	$b = \frac{-\frac{1}{2}}{\frac{1}{6} - 4} \left[= -\frac{1}{4} \right] \qquad \qquad 4b + c = 0.5 \text{ oe}$						
	$0 = -\frac{1}{4}$	$'\times'6'+c$ or $\frac{1}{2} = '-\frac{1}{4}'\times4+c$ $10b+2c = 0.5$ oe or $'6'b+c = 0$ oe					
		$b = -\frac{1}{4}$ and $c = \frac{3}{2}$ A1					
			(3)				
		1	Notes	Total 8			
(a)	B 1	Сао	Cao				
(b)	M1		For integrating the 1^{st} line of the pdf and setting = 0.5 Ignore limits				
	A1*	Answer is given so a correct solution must be seen with no errors. There must be at least one line of correct working from the M mark to the final answer.					
	3	Mark parts c and d together					
(c)	M1	For setting the area of the triangle $= 0.5$					
	A1	Cao					
(d)	M1	A correct method for finding b ft their d value or $4b+c=0.5$ oe (this may be seen any part of this question) Allow $4b+c=64a$					
	M1	M1 A correct method for finding c ft their b and d value or $10b+2c=0.5$ oe or $'d' \times b+c=0$ oe (these may be seen any part of this question) Allow db+c=0					
	A1 For both b and c correct NB $b = -0.25$ oe and $c = 1.5$ oe will score $3/3$						

Question				
Number		Scheme	Marks	
3 (a)(i)	3 + [0] +	-29 = 32*	B1*	
(ii)	3 + 15 + 29 = 47*			
			(2)	
	ſ	$\frac{1}{2}$ 32 t 47		
(b)	f(t) =	$ \frac{1}{15} 32,, t, 47 0 otherwise $	M1 A1	
	l	0 otherwise		
			(2)	
(c) (i)	[E(T) =]		B1	
		$(47-32)^2$	M1	
(ii)	$\left[\operatorname{Var}(T) \right]$	$=$ $\int \frac{12}{12}$	M1	
	75	$=]\frac{(47-32)^{2}}{12}$.75		
	$\frac{-}{4} = 18.$./>	A1	
			(3)	
(1)	(40 22	1	M1	
(d)	(40-32	$\frac{1}{15}$	M1	
	$(40 - 32)$ $= \frac{8}{15}$		A1	
	15		AI	
			(2)	
		Notes	Total 9	
(a)(i)	B1*	For 3 + [0] + 29		
(ii)	B1*	For 3 + 15 + 29 Allow 32 + 15		
		For $f(t) = \frac{1}{15}$ 32, , t, 47 Allow use of < instead of one/both \leq signs.		
(b)	M1	Allow the use of any letter for $f(t)$ and t (Condone inconsistent use of letters) but we r	nust have	
		f(t) and an inequality	nust nuve	
		Fully correct pdf $f(t) = \begin{cases} \frac{1}{15} & 32 , t , 42 \end{cases}$ Must be $f(t)$ and t. Condone $f(T)$ and T		
	A1	0 otherwise		
		Allow use of $<$ instead of one/both \leq signs		
(a)(i)	B1	Allow equivalent for the 0 otherwise. For 39.5 oe		
(c)(i)	D1			
(ii)	M1	For use of $\operatorname{Var}(T) = \frac{\left(\beta - \alpha\right)^2}{12}$		
1		12 For 18.75 oe		
	Λ1			
	A1			
(d)	A1 M1	For use of $(40 - \alpha) \times \frac{1}{\beta - \alpha}$		
(d)				

S2_2023_10_MS

Question Number		Scheme					
4 (a)	$0.2 \times \pounds 10 + 0.3 \times \pounds 12 + 0.5 \times \pounds 15$					M1	
	$= [\pounds] 13.10$					A1	
	10 10 1		12 12 12	15 15 15			
(b)			12 12 15 (×3)			B1 B1	
			10 12 12 (×3)	10 15 15 (×3)			
	10 12 1	5 (×6)				(2)	
(-)	P(10) = 0	0.2	P(12) = 0.3	P(15) = 0.5		(2) B1	
(c)	· · ·		()	P(13) = 0.3			
		can be 10, 12				B1	
	$\mathbf{P}(M=1)$	$0) = 0.2^3 + 0.2$	$2^2 \times 0.3 \times 3 + 0.2^2 \times 0.5$	$\times 3$ or $1 - 0.8^3 - 3 \times 0.$	$8^2 \times 0.2$	M1	
	P(M=1)	$2) = 0.3^3 + 0.3$	$v^{2} \times 0.5 \times 3 + 0.3^{2} \times 0.2$	$\times 3 + 0.2 \times 0.3 \times 0.5 \times 6$		M1	
	$P(M = 15) = 0.5^{3} + 0.5^{2} \times 0.3 \times 3 + 0.5^{2} \times 0.2 \times 3 \text{ or } 1 - 0.5^{3} - 3 \times 0.5^{2} \times 0.5$				² ×0.5	M1	
		М	10	12	15		
	P(2	M = m)	$\frac{13}{125} = 0.104$	$\frac{99}{250} = 0.396$	$\frac{1}{2} = 0.5$	A1	
						(6)	
			N	otes		Total 10	
(a)	M1	For 0.2×10+	For $0.2 \times 10 + 0.3 \times 12 + 0.5 \times 15$ May be implied by a correct answer				
	A1	Cao Allow 1	Cao Allow 13.1				
(b)	B 1		B1 for at least 5 possible combinations. Ignore repeats. May be seen in part c				
	B1	For all 10 possible combinations. Ignore repeats. May be seen in part c					
(c)	B1	Correct probabilities – may be seen in an equation or implied by a correct probability					
	B1		All 3 medians and no extras				
	M1		A correct method for one of the probabilities (May be implied by a correct probability)				
	M1	A correct method for two of the probabilities (May be implied by 2 correct probabilities)					
	M1	A correct method for all three probabilities (May be implied by 3 correct probabilities) or 3 probabilities that add to 1					
	A1			abilities must be attach	ed to the correct median		

S2_2023_10_MS

NumberB15 (a)Complaints received are independent or occurring at a constant rate or singlyB1(b)(i) $[P(X < 3 X ~ Po(6)) =]0.0620$ awrt 0.062B1(ii) $[P(X6) =]1 - P(X, , 5)$ or $1 - 0.4457 = 0.5543$ awrt 0.554M1A1(c) $H_0 : \lambda = 6$ $H_1 : \lambda > 6$ B1 $P(X12) = 1 - P(X, , 21) = [1 - 0.9799]$ or $P(X11) = 1 - P(X, , 20) = [1 - 0.9574]$ M1 R eject H_0/In the CR/SignificantM1There is sufficient evidence to suggest that the mean number of complaints receivedA1ftis greater than 6 per weakB1(d) $H_0 : \lambda = 6$ $H_1 : \lambda < 6$ 6 week period is $Po(36) \Rightarrow N(36, 36)$ B1 $P(X, 26) \approx P(Y < 26.5) = P(Z < \frac{26.5 - 36}{6})$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M $[P(Z < -1.583)] = 0.0571(Calculator 0.05667) or x < 25.63A1awrt 0.057awrt 25.6Do not reject HavKor in the CR/Not significantThere is insufficient evidence to suggest that the mean number of complaintsreceived after the changes made is less than 6 per week10(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random orconstant rate or singly(b)(i)B1B1 avrt 0.062(ii)M1 For writing or using 1 - P(X, x) of x - 0.544(c)B1 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of \lambda or \muM1 For vriting or using 1 - P(X, x) or 1 - P(X, 20)A1 For 0.0201 or CR11M1 A correct statement - no context meeded bu$	Question		Scheme	Mark	s	
(b)(i) $\begin{bmatrix} P(X < 3 X - Po(6)) = \end{bmatrix} 0.0620 & awrt 0.062 & B1 \\ \hline P(X6) =]1 - P(X , 5) or 1 - 0.4457 = 0.5543 & awrt 0.554 & M1A1 \\ \hline P(X12) = 1 - P(X , 5) or 1 - 0.4457 = 0.5543 & awrt 0.554 & M1A1 \\ = 0.0201 & or CR11 & = 1 - P(X , 20) = [1 - 0.9794] & M1 \\ = 0.0201 & or CR11 & A1 \\ Reject H_0/In the CR/Significant & M1 \\ There is sufficient evidence to suggest that the mean number of complaints received A1ft is greater than 6 per week & B1 \\ 6 week period is Po(36) ⇒ N(36, 36) & B1 \\ 9 (Y, 26) ≈ P(Y < 26.5) = P(Z < \frac{26.5 - 36}{6}) & or \frac{X + 0.5 - 36}{\sqrt{36}} < -1.6449 & M1 \\ M1 \\ There is sufficient evidence to suggest that the mean number of complaints received M1 M. \\ \begin{bmatrix} P(Z < -1.583) \end{bmatrix} = 0.0571(Calculator 0.05667) or X < 25.63 A1 A1 A1 A1 A1 A2 A2 A2 A3 A3 A3 A3 A3 A3 A3 A4 A3 A3 A4 A4 A4 A4 A4 A4 A4 A4$	Number					
(ii) $\begin{bmatrix} P(X6) =] 1 - P(X, s) \text{ or } 1 - 0.4457 - 0.5543 & awrt 0.554 & M1A1 \\ \hline P(X12) = 1 - P(X, 11) = [1 - 0.9799] \text{ or } P(X11) = 1 - P(X, 20) = [1 - 0.9574] & M1 \\ = 0.0201 & \text{or } CR11 & A1 \\ Reject H_0/In the CR/Significant & M1 \\ There is sufficient evidence to suggest that the mean number of complaints received a 11 ft of week week & A1ft of week period is P(36) \Rightarrow N(36, 36) & B1 \\ P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right) & \text{or } \frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449 & M1 & M1 \\ There is sufficient evidence to suggest that the mean number of complaints received A1ft B1 P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right) & \text{or } x < 42.563 & A1 \\ P(Z < -1.583)\right] = 0.0571(Calculator 0.05667) & or x < 25.63 & A1 \\ Do not reject H_0/Nt in the CR/Ntot significant \\ There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week & Notes Total \\ (a) B1 A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly & M1 & GP(X, 20) \\ (b)(i) B1 awrt 0.052 & Notes Total \\ A correct assumption. Must be attached to H_0 and H_1 in terms of \lambda or \mu & M1 & For writing or using 1 - P(X, 20) P(X, 20) A1 For 0.0201 or CR11 M1 For writing or using 1 - P(X, 20) A1 For 0.0201 or CR11 M1 A correct statement – no context meeded but do not allow contradicting non contextual commen A1ft Correct conclusion in context with the words highlighted in bold Both hypotheses correct. Must be attached to H_0 and H_1 in terms of \lambda or \mu Allow use of 36 rather than 6 Pri working or using 1 - P(X, 20) A1 For writing or using 1 - P(X, 20) A1 For active tonclusion in context with the words highlighted in bold Both Mpotheses correct. Must be attached to H_0 and H_1 in terms of \lambda or \mu Allow use of 36 rather than 6 Pri working or using N(36, 36) B1 For writing or using N(36, 36) B1 For writing or using N($	5 (a)	Compl	aints received are independent or occurring at a constant rate or singly	1	(1)	
(c) $H_0: \lambda = 6$ $H_1: \lambda > 6$ $P(X12) = 1 - P(X_n, 21) = [1 - 0.9799]$ or $P(X11) = 1 - P(X_n, 20) = [1 - 0.9574]$ M1 = 0.0201 or CR11 A1 Reject H_0' In the CR/Significant M1 There is sufficient evidence to suggest that the mean number of complaints received A1ft is greater than 6 per week B1 (d) $H_0: \lambda = 6$ $H_1: \lambda < 6$ B1 $P(Y, 26) \approx P(Y < 26.5) = P(Z < \frac{26.5 - 36}{6})$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M [P(Z < -1.583)] = 0.0571(Calculator 0.05667) or $x < 25.63$ A1 a wrt 0.057 $a wrt 25.6$ M1 $There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week A1ft There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week A1ft There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week A1ft There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week A1ft There is insufficient evidence to suggest that the mean number of complaints R = \frac{1}{00000000000000000000000000000000000$	(b)(i)	$\int P(X <$	$<3 X \sim Po(6)) =]0.0620$ awrt 0.062			
P(X12) = 1-P(X, 21) = [1-0.9799] or P(X11) = 1-P(X, 20) = [1-0.9574]M1= 0.0201or CR11A1Reject Ha/In the CR/SignificantM1There is sufficient evidence to suggest that the mean number of complaints receivedA1fr(d)H ₀ : $\lambda = 6$ H ₁ : $\lambda < 6$ B16 week period is Po(36) \Rightarrow N(36, 36)B1P(Y, 26) \approx P(Y < 26.5) = P(Z < $\frac{26.5 - 36}{6}$) or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M.[P(Z < -1.583)] = 0.0571(Calculator 0.05667) or $x < 25.63$ A1 $awrt 0.057$ $awrt 25.6$ M1Do not reject Ha/Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week ii (a) B1 A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly(b)(i) B1B1 For writing or using 1-P(X., 5) May be implied by awrt 0.554(a) B1 A correct assumption. Must be attached to H ₀ and H ₁ in terms of λ or μ (d) B1 A correct statement - no context needed but do not allow contradicting non contextual comment(d) B1 A correct statement - no context with the words highlighted in hold(d) B1 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of 36 rather than 6(d) B1 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use	(ii)	$\left[P(X \right] \right]$	6) =]1 - P(X, 5) or 1 - 0.4457 = 0.5543 awrt 0.554	M1A1		
P(X12) = 1-P(X, 21) = [1-0.9799] or P(X11) = 1-P(X, 20) = [1-0.9574]M1= 0.0201or CR11A1Reject Ha/In the CR/SignificantM1There is sufficient evidence to suggest that the mean number of complaints receivedA1fr(d)H ₀ : $\lambda = 6$ H ₁ : $\lambda < 6$ B16 week period is Po(36) \Rightarrow N(36, 36)B1P(Y, 26) \approx P(Y < 26.5) = P(Z < $\frac{26.5 - 36}{6}$) or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M.[P(Z < -1.583)] = 0.0571(Calculator 0.05667) or $x < 25.63$ A1 $awrt 0.057$ $awrt 25.6$ M1Do not reject Ha/Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week ii (a) B1 A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly(b)(i) B1B1 For writing or using 1-P(X., 5) May be implied by awrt 0.554(a) B1 A correct assumption. Must be attached to H ₀ and H ₁ in terms of λ or μ (d) B1 A correct statement - no context needed but do not allow contradicting non contextual comment(d) B1 A correct statement - no context with the words highlighted in hold(d) B1 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of 36 rather than 6(d) B1 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use				ĺ	(3)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(c)	$H_0: \lambda$	$= 6 \qquad H_1: \lambda > 6$	B1		
Reject H_0/In the CR/SignificantM1There is sufficient evidence to suggest that the mean number of complaints received is greater than 6 per weekA1ft(d)H_0: $\lambda = 6$ H_1: $\lambda < 6$ B16week period is Po(36) \Rightarrow N(36, 36)B1P(Y, 26) \approx P(Y < 26.5) $=$ P $\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M $\left[P(Z < -1.583)\right] = 0.0571$ (Calculator 0.05667) or $x < 25.63$ awrt 0.057A1There is insufficient vidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekM1M1There is insufficient vidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekTotal(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly (b)(i)A correct assumption. Must be attached to H_0 and H_1 in terms of λ or μ (b)B1awrt 0.554A1(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1 - P(X, 20)$ A1For 0.201 or CR11M1A correct statement – no context meaded but do not allow contradicting non contextual commen A1 for 0.201 or CR11M1A correct continuity correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using $2.5.526/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x \times + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x \times + 0.5$, their mean and the		P(X	12) = 1 - P(X,, 2 1) = [1 - 0.9799] or P(X11) = 1 - P(X,, 2 0) = [1 - 0.9574]	M1		
There is sufficient evidence to suggest that the mean number of complaints received is greater than 6 per weekA1ft(d) $H_0: \lambda = 6$ $H_1: \lambda < 6$ B16 week period is $PO(36) \Rightarrow N(36, 36)$ B1 $P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M $\left[P(Z < -1.583)\right] = 0.0571$ (Calculator 0.05667) or $x < 25.63$ awrt 0.057A1onto reject Ho/Not in the CR/Not significantThere is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekNotesTotal(a)(b)(i)B1awrt 0.052Total(b)(i)B1awrt 0.052TotalAlftTotal(b)(i)B1awrt 0.554(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1 - P(X_n, 21)$ or $1 - P(X_n, 20)$ AlftCorrect conclusion in context meeded but do not allow contradicting non contextual commenAlft(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather			= 0.0201 or CR11	A1		
is greater than 6 per week A111 (d) H ₀ : λ = 6 H ₁ : λ < 6		Reject	H ₀ /In the CR/Significant	M1		
6 week period is $Po(36) \Rightarrow N(36, 36)$ B1 $P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M $\left[P(Z < -1.583)\right] = 0.0571$ (Calculator 0.05667) or $x < 25.63$ awrt 25.6 A1Do not reject H ₀ /Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekA1(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singlyTotal(b)(i)B1awrt 0.062 (ii) (ii)M1For writing or using $1-P(X, s)$ May be implied by awrt 0.554 (c)B1Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ M1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For o.0201 or CR11M1A correct tance then t - no context needed but do not allow contradicting non contextual commen A1ftA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of 36 rather than 6M1For standardising using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$				A1ft		
6 week period is $Po(36) \Rightarrow N(36, 36)$ B1 $P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M1 $P(Y, 26) \approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $x < 25.63$ A1 $awrt 0.057$ $awrt 25.6$ M1Do not reject H ₀ /Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints A1received after the changes made is less than 6 per weekTotal(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly(b)(i)B1awrt 0.62(ii)M1For writing or using $1-P(X, s)$ May be implied by awrt 0.554(a)For writing or using $1-P(X, 1)$ or $1-P(X, 20)$ A1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For correct conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6(d)B1For standardising using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$.A1Avrt 0.057 (NB Poisson used gives 0.0512685 and scores MOM0A0) or CR < awrt 25.6 (Allow \leq)M11For extentemt – no context with the words in bold (Allow The mean n					(5)	
P(Y, 26) \approx P(Y < 26.5) = P(Z < $\frac{26.5 - 36}{6}$) or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M[P(Z < -1.583)] = 0.0571 (Calculator 0.05667) or x < 25.63 awrt 0.057 awrt 25.6A1Do not reject H_0/Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weckM1(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singlyTotal(b)(i)B1awrt 0.052Total(ii)M1For writing or using $1 - P(X, 5)$ May be implied by awrt 0.554A1(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1 - P(X, 21)$ or $1 - P(X, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual comment A1ft(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6(d)B1For writing or using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or stand	(d)	$H_0:\lambda$	$= 6 \qquad H_1: \lambda < 6$	B1		
P(Y, 26) \approx P(Y < 26.5) = P(Z < $\frac{26.5 - 36}{6}$) or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$ M1 M[P(Z < -1.583)] = 0.0571 (Calculator 0.05667) or x < 25.63 awrt 0.057 awrt 25.6A1Do not reject H_0/Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weckM1(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singlyTotal(b)(i)B1awrt 0.052Total(ii)M1For writing or using $1 - P(X, 5)$ May be implied by awrt 0.554A1(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1 - P(X, 21)$ or $1 - P(X, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual comment A1ft(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6(d)B1For writing or using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation or stand		6 week	period is $Po(36) \Rightarrow N(36, 36)$	B1		
All awrt 0.057awrt 25.6Do not reject H0/Not in the CR/Not significantM1There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekA1ftNotesTotal(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singlyTotal(b)(i)B1awrt 0.062Total(ii)M1For writing or using 1-P(X ,, 5) May be implied by awrt 0.554A1(c)B1Both hypotheses correct. Must be attached to H0 and H1 in terms of λ or μ M1For writing or using 1-P(X,, 21) or 1-P(X,, 20)A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1For writing or using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising using x -0.5/ $x'x$ + 0.5, their mean and their standard deviation or standardising u		P(<i>Y</i> ,, 2	26) $\approx P(Y < 26.5) = P\left(Z < \frac{26.5 - 36}{6}\right)$ or $\frac{x + 0.5 - 36}{\sqrt{36}} < -1.6449$	M1 M1	L	
$ \begin{array}{ c c c c c } \hline Do not reject H_0/Not in the CR/Not significant & M1 \\ \hline There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per week & A1ft \\ \hline & A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly & O62 \\ \hline & A1 \\ \hline & A1 \\ \hline & At \\ \hline & A1 \\ \hline & At \\ \hline & A1 \\ \hline & B1 \\ \hline & For writing or using 1-P(X, 5) May be implied by awrt 0.554 \\ \hline & A1 \\ \hline & A1 \\ \hline & A1 \\ \hline & For writing or using 1-P(X, 21) or 1-P(X, 20) \\ \hline & A1 \\ \hline & For 0.0201 \text{ or } CR \dots 11 \\ \hline & M1 \\ \hline & A correct statement - no context needed but do not allow contradicting non contextual commen \\ \hline & A1ft \\ \hline & Correct conclusion in context with the words highlighted in bold \\ \hline & B1 \\ \hline & For writing or using 25.5/26/26.5, their mean and their standard deviation or standardising using x-0.5/x/x + 0.5, their mean and their standard deviation or standardising using x-0.5/x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449 \\ \hline & M1 \\ \hline & For a correct continuity correction written or used e.g. 26.5 or x + 0.5 \\ \hline & A1 \\ \hline & awrt 0.057 (NB Poisson used gives 0.0512685\dots and scores M0M0A0) \\ \hline & or CR < awrt 25.6 (Allow \leqslant) \\ \hline & M1 \\ \hline & A correct statement - no context meeded but do not allow contradicting non contextual commen \\ \hline & A1 \\ \hline & A correct continuity correction written or used e.g. 26.5 or x + 0.5 \\ \hline & A1 \\ \hline & awrt 0.057 (NB Poisson used gives 0.0512685\dots and scores M0M0A0) \\ \hline & or CR < awrt 25.6 (Allow \leqslant) \\ \hline & M1 \\ \hline & A correct conclusion in context with the words in bold (Allow The mean number of complaints \\ \hline & A1 \\ \hline & Correct conclusion in context with the words in bold (Allow The mean number of complaints \\ \hline & A1 \\ \hline & Correct conclusion in context with the words in bold (Allow The mean number of complaints \\$		$\left[P(Z\cdot$		A1		
There is insufficient evidence to suggest that the mean number of complaints received after the changes made is less than 6 per weekA1ftImage: the change is less than 6 per weekTotalImage: the change is less than 6 per weekImage: the change is less t		Donot		N/1		
received after the changes made is less than 6 per weekAfthNotesTotal(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singlyTotal(b)(i)B1awrt 0.062Total(ii)M1For writing or using $1-P(X, 5)$ May be implied by awrt 0.554A1(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in boldB1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or x + 0.5A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints		· · ·				
Notes Total (a) B1 A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly (b)(i) B1 awrt 0.062 (ii) M1 For writing or using $1-P(X, 5)$ May be implied by awrt 0.554 A1 awrt 0.554 (c) B1 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1 For writing or using $1-P(X, 1)$ or $1-P(X, 20)$ A1 For 0.0201 or CR11 M1 A correct statement – no context needed but do not allow contradicting non contextual commen A1ft Correct conclusion in context with the words highlighted in bold B1 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6 B1 For writing or using N(36, 36) M1 For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449 M1 For a correct continuity correction written or used e.g. 26.5 or x + 0.5 A1 awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leqslant) M1 A correct statement – no context needed but do not allow contradicting non contextual commen or CR < awrt						
(a)B1A correct assumption. Must be in context so need 'complaints' and then independent/random or constant rate or singly(b)(i)B1awrt 0.062(ii)M1For writing or using $1 - P(X, 5)$ May be implied by awrt 0.554(c)B1Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ M1For writing or using $1 - P(X, 21)$ or $1 - P(X, 20)$ A1Both hypotheses correct. Must be attached but do not allow contradicting non contextual commenA11For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or x + 0.5A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leqslant)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints						
(a)B1constant rate or singly(b)(i)B1awrt 0.062(ii)M1For writing or using $1-P(X, s)$ May be implied by awrt 0.554(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1Both hypotheses correct. Must be attached but do not allow contradicting non contextual commentM1A correct statement – no context needed but do not allow contradicting non contextual commentA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449M1For a correct continuity correction written or used e.g. 26.5 or x + 0.5A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leqslant)M1A correct statement – no context needed but do not allow contradicting non contextual comment or CR < awrt 25.6 (Allow \leqslant)			Notes	Total	(7) 16	
(b)(i)B1awrt 0.062(ii)M1For writing or using $1-P(X, 5)$ May be implied by awrt 0.554A1awrt 0.554(c)B1Both hypotheses correct. Must be attached to H0 and H1 in terms of λ or μ M1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H0 and H1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints	(a)	B1		andom or		
(ii)M1For writing or using $1-P(X, 5)$ May be implied by awrt 0.554(a)A1awrt 0.554(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1-P(X, 21)$ or $1-P(X, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commentA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints	(b)(i)	B1				
(c)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ M1For writing or using $1-P(X_n, 21)$ or $1-P(X_n, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation or standardising or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commen or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context meeded but do not allow contradicting non contextual commen or CR < conclusion in context with the words in bold (Allow The mean number of complaints		M1	For writing or using $1-P(X_{,,}, 5)$ May be implied by awrt 0.554			
M1For writing or using $1 - P(X_n, 21)$ or $1 - P(X_n, 20)$ A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commentA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints)		A1				
A1For 0.0201 or CR11M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x-0.5/x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints	(c)	B1	Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ			
M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using x -0.5/ x/x + 0.5, their mean and their standard deviation and setting equal to -1.6449M1For a correct continuity correction written or used e.g. 26.5 or x + 0.5A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual comment A 1ftA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints)	, ,	M1	For writing or using $1-P(X_{,,,}21)$ or $1-P(X_{,,,}20)$			
A1ftCorrect conclusion in context with the words highlighted in bold(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commen Correct conclusion in context with the words in bold (Allow The mean number of complaints		A1	For 0.0201 or CR11			
(d)B1Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ Allow use of 36 rather than 6B1For writing or using N(36, 36)M1For standardising using 25.5/26/26.5, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual comment Correct conclusion in context with the words in bold (Allow The mean number of complaints		M1	A correct statement - no context needed but do not allow contradicting non contextual	comment	ts	
(d)B1than 6B1For writing or using N(36, 36)B1For writing or using N(36, 36)M1For standardising using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x - 0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints)		A1ft				
B1For writing or using N(36, 36)M1For standardising using $25.5/26/26.5$, their mean and their standard deviation or standardising using $x-0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual comment Correct conclusion in context with the words in bold (Allow The mean number of complaints)	(d)	B1		36 rather	•	
M1using $x-0.5/x/x + 0.5$, their mean and their standard deviation and setting equal to -1.6449 M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual comment Correct conclusion in context with the words in bold (Allow The mean number of complaints)		B1				
M1For a correct continuity correction written or used e.g. 26.5 or $x + 0.5$ A1awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow \leq)M1A correct statement – no context needed but do not allow contradicting non contextual commenA1ftCorrect conclusion in context with the words in bold (Allow The mean number of complaints)		M1		•		
A1 awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0) or CR < awrt 25.6 (Allow ≤)		M1		+49		
A1 or CR < awrt 25.6 (Allow ≤)		awrt 0.057 (NB Poisson used gives 0.0512685 and scores M0M0A0)				
M1 A correct statement – no context needed but do not allow contradicting non contextual commen A1ft Correct conclusion in context with the words in bold (Allow The mean number of complaints)		A1				
		M1	A correct statement - no context needed but do not allow contradicting non contextual			
		A1ft	Correct conclusion in context with the words in bold (Allow The mean number of constayed the same/not changed oe)	nplaints l	has	

S2_2023_10_MS

Question		52_2023_				
Number		Scheme Mar				
6(a)	$\left[P \right(Y$	$\left[P\left(Y < \frac{1}{4}k \mid Y < k\right) = \right] \frac{F\left(\frac{1}{4}k\right)}{F(k)} = \frac{\frac{1}{21}\left(\frac{k}{4}\right)^2}{\frac{1}{21}k^2} = \frac{1}{16} \text{ oe}$				
			(2)			
(b)		$= -\frac{1}{15}k^{2} + \frac{4}{5}k - \frac{7}{5} \qquad \frac{d}{dy}\left(\frac{1}{21}y^{2}\right) = \frac{2}{21}y \text{ or } \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^{2}}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6-y)$	M1			
	$\Rightarrow 4k$	$d^{2} - 28k + 49 = 0$ oe $\frac{d}{dy}\left(\frac{1}{21}y^{2}\right) = \frac{2}{21}y \& \frac{d}{dy}\left(\frac{2}{15}\left(6y - \frac{y^{2}}{2}\right) - \frac{7}{5}\right) = \frac{2}{15}(6-y)$	A1			
	\Rightarrow (2	$(k-7)^2 = 0$ $\frac{2}{21}k = \frac{2}{15}(6-k)$	M1			
		$k = \frac{7}{2}$ oe	A1			
			(4)			
(c)	f(<i>y</i>)=	$\begin{cases} \frac{2}{21}y & 0, y, y', '3.5' \\ \frac{2}{15}(6-y) & '3.5' < y, 6 \\ [0] & [otherwise] \end{cases}$	M1 M1			
	$\mathrm{E}(Y)$ =	$= \frac{2}{21} \int_{0}^{3.5'} y^2 dy + \frac{2}{15} \int_{3.5'}^{6} (6y - y^2) dy \implies \frac{2}{21} \left[\frac{y^3}{3} \right]_{0}^{3.5'} + \frac{2}{15} \left[3y^2 - \frac{y^3}{3} \right]_{3.5'}^{6}$	M1 M1			
	$\frac{2}{21}\left(\frac{34}{2}\right)$	$\left(\frac{43}{4}\right) + \frac{2}{15}\left(\frac{325}{24}\right) = \frac{19}{6} = 3.166$ awrt 3.17 dM1 dA1				
		(6)				
(-)	M1	Total 12				
(a)	M1	For a correct probability statement or a correct ratio of probabilities				
	A1	For $=\frac{1}{16}$ or 0.0625				
(b)	M1	For setting the two lines of the cdf = to each other or $\frac{2}{21}y$ or $\frac{2}{15}(6-y)$ (Implied by a correct 3TQ)				
	A1	For a correct 3TQ or $\frac{2}{21}y$ and $\frac{2}{15}(6-y)$				
	M1	For solving their 3TQ. If the 3TQ is not correct, then a correct method must be shown or setting their 2 lines of the $pdf = to$ each other				
	A1	k = 3.5 oe NB $k = 3.5$ with no incorrect working scores $4/4$				
(c)	M1	Attempting to differentiate 1 of the functions. May be seen in part (b) or in an attempt to find $E(Y)$				
	M1	Attempting to differentiate both with one correct. May be seen in part (b) or in an attempt to find $E(Y)$				
	M1	For writing or using $E(Y) = \int_0^{3.5} y f(y) dy + \int_{3.5}^6 y f(y) dy$ Ignore limits				
	M1					
	dM1	dM1 Dependent on previous M1. For substitution of limits, must be 0 or 6 and ft their 3.5. May be implied by $\frac{49}{36}$ oe or $\frac{65}{36}$ oe or $\frac{19}{6}$ oe. If the integral is not correct, then we must see evidence of substitution.				
	dA1 Dependent on previous M1. For $\frac{19}{6}$ or awrt 3.17					

S2_2023_10_MS

Question Number		Scheme	Marks			
7(a)	$\frac{97.5-2}{\sigma}$	$\frac{\mu}{\sigma} = 1.25$ $\frac{85.5 - \mu}{\sigma} = -0.75$	M1 M1 M1 M1 M1			
	$2\sigma = 12$		M1			
	$\sigma = 6 *$	$\left[\mu = 90\right]$	dA1*			
			(7)			
(b)	np = 90	0 and $np(1-p) = 36$	M1			
	1 - p =	0.4	M1			
	p = 0.6 and $n = 150$					
	(3)					
		Notes	Total 10			
		NB Condone use of <i>np</i> for μ and $\sqrt{np(1-p)}$ for σ				
(a)	M1	For standardising using 96.5/97/97.5 and = z value, where $1 < z < 1.5$				
	M1	M1 For standardising using $85.5/86/86.5$ and $= z$ value, where $-1 < z < -0.5$				
	M1 For use of a correct continuity correction in either equation					
	M1 For a correct <i>z</i> value used in either equation					
	M1 An attempt at both equations with one fully correct					
	M1	For solving simultaneously eliminating μ or σ As this is a show that question then w	orking must			
	be seen.					
	dA1	Dependent on all previous M marks being awarded $\sigma = 6*$				
(b)	M1	For $np = \mu$ and $np(1-p) = \sigma^2$ Follow through their μ (Condone $npq = \sigma^2$)				
	M1 For solving simultaneously. May be implied by a correct value for <i>p</i> and <i>n</i>					
	A1	Both $p = 0.6$ and $n = 150$				