Question Number	Scheme			
1 (a)	Po(isson) with $(\lambda =)4$		B1	
(b)	Pairs of	shoes (are sold) singly/randomly/independently/at a constant (average) rate	B1	
(c) (i)	X = num	ber of sales per hour $\Rightarrow X \sim Po(4)$		
	$P(X > 4) = 1 - P(X \le 4)$		M1	
	= 0.3712 awrt 0.371			
(ii)	('0.371	.') ³	M1	
	= 0.0511	47 0.05115 or awrt 0.0511	Al	
			(4)	
(d)	$H_0: \lambda =$	'4' $H_1: \lambda > '4'$	B1ft	
	$P(X \ge 7)$	$P(X \ge 9) = 1 - P(X \le 6)$ or $P(X \ge 9) = 1 - P(X \le 8) = 0.0214$	M1	
	= 0.1107		A1	
	Not sign	ificant/Do not reject H_0 /Not in the critical region	M1	
		insufficient evidence of an <u>increase</u> in <u>sales</u> following the appearance of the	dA1	
	advert/ <u>manager's belief</u> is not supported.			
			(5)	
		Notes	Total 11	
(a)	B 1	B1 For Po or Poisson and 4 must be seen in part (a). Do not allow P(4)		
(b)	B1	For one of the given assumptions in context (must have context of shoes or sales).		
		Ignore extraneous non-contradictory comments.		
(c) (i)	M1	For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371		
(ii)	A1 M1	'part (i)' ³		
(11)	1			
	A1	0.05115 or awrt 0.0511 (Calculator gives 0.051132)		
(1)		0.05115 or awrt 0.0511 (Calculator gives 0.051132)Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a)		
(d)	A1 B1ft			
(d)		Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a)		
(d)		Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁		
(d)	B1ft	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6)		
(d)	B1ft	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6) If a CR approach is taken then award M1 for P(X \ge 9) = 1 - P(X \le 8) written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR X \ge 9		
(d)	B1ft M1	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6) If a CR approach is taken then award M1 for P(X \ge 9) = 1 - P(X \le 8) written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR X \ge 9 Any correct ft statement consistent with their <i>p</i> -value and 0.05 or their CR and 7 - no constant of the constant o	context	
(d)	B1ft M1	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6) If a CR approach is taken then award M1 for P(X \ge 9) = 1 - P(X \le 8) written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR X \ge 9 Any correct ft statement consistent with their <i>p</i> -value and 0.05 or their CR and 7 - no of needed but do not allow contradicting non contextual comments. The comparison of the	context eir <i>p</i> -	
(d)	B1ft M1 A1	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6) If a CR approach is taken then award M1 for P(X \ge 9) = 1 - P(X \le 8) written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR X \ge 9 Any correct ft statement consistent with their <i>p</i> -value and 0.05 or their CR and 7 - no constant of the constant o	context eir <i>p</i> -	
(d)	B1ft M1 A1	Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using P(X \ge 7) = 1 - P(X \le 6) If a CR approach is taken then award M1 for P(X \ge 9) = 1 - P(X \le 8) written or used This mark may be implied by a correct <i>p</i> -value or CR awrt 0.111 or CR X \ge 9 Any correct ft statement consistent with their <i>p</i> -value and 0.05 or their CR and 7 - no consistent with their <i>p</i> -value and 0.05 or their CR and 7 - no consistent with their <i>p</i> -value and the significance level is not counted as a non contextual statement. May be in	context eir <i>p</i> - nplied by	

S2_2023_01_MS

Question Number		Scheme	Marks	
2 (a)	20, 20, 2	0 20, 20, 50 (×3) 20, 50, 50 (×3) 50, 50, 50	B2	
			(2)	
(b)	a = 30 ar	b = 40	B1	
(c)	$p^3 = \frac{4913}{100000000000000000000000000000000000$			
	$p^{3} = \frac{4913}{8000} \text{or} q^{3} = \frac{27}{8000}$ $p = \frac{17}{20} \ (0.85) \text{and} \ q = \frac{3}{20} \ (0.15)$		M1	
	$p = \frac{17}{10}$	(0.85) and $q = \frac{3}{2} (0.15)$	A1	
	20			
			(2)	
(d)		$= 3 \times p^2 \times q^2 $ [P(40)] $= 3 \times p^2 \times q^2$	M1 M1	
	$c = \frac{2601}{2}$	$d = \frac{459}{8000}$		
	8000	a = 8000	A1	
			(3)	
	M		B1 M1	
(e)	P(M =	$(m) = \frac{3757}{243}$	Alft	
		4000 4000		
		A.Y. ,	(3)	
		Notes For all 4 correct combinations	Total 11	
(a)	B2	(B1 for 3 correct combinations)		
		Ignore extraneous repetitions of any of the given combinations		
(b)	B 1	For $a = 30$ and $b = 40$		
(c)	M1	Either $p^3 = \frac{4913}{8000}$ or $q^3 = \frac{27}{8000}$		
(0)				
	A1	p = 0.85 oe and $q = 0.15$ oe		
(d)	M1	$[P(30)] = 3 \times (\text{their } p)^2 \times (\text{their } q) \text{ or } [P(40)] = 3 \times (\text{their } p) \times (\text{their } q)^2$		
(4)	1711	must see values substituted and must be using their values from part (c)		
	[P($\left[P(30) \right] = 3 \times (\text{their } p)^2 \times (\text{their } q) \text{ and } \left[P(40) \right] = 3 \times (\text{their } p) \times (\text{their } q)^2$		
		153		
		or use of sum of probabilities = 1 i.e. $c + d = \frac{153}{400}$		
		For $c = \frac{2601}{8000} (= 0.325125)$ and $d = \frac{459}{8000} (= 0.057375)$		
	A1	For $c = \frac{1}{8000} (= 0.325125)$ and $d = \frac{1}{8000} (= 0.057375)$		
(e)	B1	For 20 and 50 only (ignore notation used for <i>M</i>)		
		Either 4913 their a or 27 their d		
	M1	Either $\frac{4913}{8000}$ + their <i>c</i> or $\frac{27}{8000}$ + their <i>d</i>		
		for ft answers only values will need to be checked		
		For $\frac{3757}{4000}$ oe and $\frac{243}{4000}$ oe		
		$\frac{1}{4000}$ be and $\frac{1}{4000}$ be		
		Follow through their values for c and d but $P(M = 20) + P(M = 50)$ must s	sum to 1	
		(A table is not required).	1 0 0 7	
		If a and b are reversed then allow $a = 40$ and $b = 30$ – this will mean $p = 0.15$ and 450 – 2601	nd $q = 0.85$,	
	NB	$c = \frac{459}{2000} d = \frac{2601}{2000}$		
		8000 8000		

Question Number		Scheme	Marks	
3 (a) (i)	$X \sim B(10, 0.1)$			
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9872$			
	= 0.0128 awrt 0.0128			
<···>	$P(1 < X < 5) = P(X \le 4) - P(X \le 1) = 0.9984 - 0.7361$			
(ii)	or $P(X=2) + P(X=3) + P(X=4) = 0.1937 + 0.0574 + 0.0112$			
	= 0.2623 awrt 0.262			
			(4)	
(b)	$H_0: p =$	0.1 $H_1: p < 0.1$	B1	
	$X \sim B(50, 0.1)$			
	$P(X \leq 2)$	$= 0.1117$ or CR $X \leq 1$	B1	
		eject H ₀ /Not in the critical region	M1	
		insufficient evidence to suggest that this result supports the managing <u>director's</u>		
		t enough evidence to suggest a <u>reduction</u> in the probability of a tennis ball	A1	
	<u>laning</u> th	ne bounce <u>test</u>	(4)	
(a)	$X \sim \mathbf{R}(\mathbf{x})$	(n, 0.1) and we reject H ₀ if P(X = 0) < 0.01	(4)	
(c)				
	P(X=0)	$) = \left[{}^{n}C_{0} \times 0.1^{0} \right] \times 0.9^{n} [< 0.01]$	M1	
	$0.9^{44} = 0$	$0.00969[< 0.01] \qquad \qquad n > \frac{\ln 0.01}{\ln 0.9} \Longrightarrow n > 43.7$	M1	
	n = 44		A1	
		Notes	Total 11	
(a) (i)	M1	for writing or using $P(X \ge 4) = 1 - P(X \le 3)$		
	A1	awrt 0.0128		
(ii)	M1	for writing or using $P(X \le 4) - P(X \le 1)$		
	or for writing or using $P(X=2) + P(X=3) + P(X=4)$			
(b)	B1	awrt 0.262 Both hypotheses correct. Must be in terms of p or π Must be attached to H ₀ and H ₁		
(0)	B1	awrt 0.112 or CR ≤ 1		
		A correct ft statement consistent with their p –value and 0.05 or their CR and 2– no co	ontext	
		needed but do not allow contradicting non contextual comments. The comparison of their <i>p</i> -		
	M1 v	value and the significance level is not counted as a non contextual statement.		
		May be implied by a correct ft conclusion in context. Must have a <i>p</i> -value or CR to access this mark.		
ļ		Correct conclusion in context which must be not rejecting H_0 . Must use underlined v	vords (oe)	
	A1	No hypotheses then A0	(0 0).	
(c)	M1	For recognising $P(X=0)=0.9^n$		
(-)				
	1	Exp $0.9^{44}(-0.00969)$ or $0.9^{43}(-0.01077)$ or rearranging to $n > \frac{\ln 0.01}{\ln 0.01}$ (A)	$11_{\rm OW} =$	
	M1	For $0.9^{44} (= 0.00969)$ or $0.9^{43} (= 0.01077)$ or rearranging to $n > \frac{\ln 0.01}{\ln 0.9}$ (A	llow =)	
		For $0.9^{-n} (= 0.00969)$ or $0.9^{-n} (= 0.01077)$ or rearranging to $n > \frac{1}{\ln 0.9}$ (A n > awrt 43.7 implies M1M1 (Allow $n = awrt 43.7 for M1M1$)	llow =)	
	M1 A1 SC	For $0.9^{-1} (= 0.00969)$ or $0.9^{-1} (= 0.01077)$ or rearranging to $n > \frac{1}{\ln 0.9}$ (A	llow =)	

Question Number		Schen	ne	Marks
4 (a)	$\frac{9}{20}$			B1
		π		(1)
(b)	(21k-k)	$\times \frac{\pi}{20} = 1$		M1
	$k = \frac{1}{\pi} *$			A1*
		1 7 11		(2)
(c) (i)	E(X) =	$\left\lfloor \mathrm{E}(X) = \frac{1}{2} \left(k + 21k \right) \right\rfloor = \frac{11}{\pi}$		
(ii)	Var(X)	$=\frac{1}{12}\left(21k-k\right)^2$	or $\operatorname{Var}(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 \mathrm{d}x - \left(\frac{11}{\pi}\right)^2$	M1
		$=\frac{100}{3\pi^2}$		A1
		571		(3)
(d)	$\mathrm{E}(A) = x$	$\pi \mathrm{E}(X^2) + 4\mathrm{E}(X) + \frac{4}{\pi}$	$E(A) = \int_{k}^{21k} f(x)(A) dx = \int_{k}^{21k} \frac{\pi}{20} (\pi) (x^{2} + \frac{4}{\pi}x + \frac{4}{\pi^{2}}) dx$	M1
	$E(X^2) =$	$=\frac{100}{3\pi^2} + \left(\frac{11}{\pi}\right)^2 = \frac{463}{3\pi^2}$	$E(A) = \frac{\pi}{20} \left(\pi \right) \left(\frac{x^3}{3} + \left(\frac{4}{\pi} \right) \frac{x^2}{2} + \frac{4}{\pi^2} x \right)$	M1
	E(A) = -	$\frac{463}{3\pi} + \frac{44}{\pi} + \frac{4}{\pi}$	sub limits $\frac{21}{\pi}$ and $\frac{1}{\pi}$	M1
	= -	$\frac{607}{3\pi}$	= awrt 64.4	A1
			NT	(4)
(2)	B1	0.450e.cao	Notes	Total 10
(a) (b)	M1	0.1500 000	angle = 1 Any equivalent rearrangement, allow $20k$ instead	d of $(21k - k)$
(0)	A1*		correct solution must be seen	
(c)(i)	B1		(isw after correct answer seen)	
(ii)	ii) M1 use of $\frac{(b-a)^2}{12}$ or $\operatorname{Var}(X) = \int_{\perp}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 \mathrm{d}x - \left(\frac{11}{\pi}\right)^2$			
	A1	for $\frac{100}{3\pi^2}$ oe must be in terms	rms of π (isw after correct answer seen)	
	SC		given in terms of k, score B1M1A0 for (c)(i) $11k$ and (c)(ii)	5
(d)	M1	for expanding $E(A) = E\left($	$\left(\pi X^2 + 4X + \frac{4}{\pi}\right)$ or for setting up correct integral (ignored)	e limits)
	ЛЛ 1	Valid method for finding	$E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of $x^2 f(X)$	(x)
	M1		$f(x)A$ with at least one $x^n \to x^{n+1}$	
	M1	substitution of their $E(X)$) and their $E(X^2)$ into their $E(A)$ or for use of corre	ct limits
	A1	for $\frac{607}{3\pi}$ or awrt 64.4		

Question Number		Scheme	Marks	
5 (a)	$X \sim Po(5)$			
	$P(X \le 5) = 0.6160$ awrt 0.616		M1 A1	
			(2)	
(b)	$X \sim B(4)$	-,"0.616")	Blft	
(0)	$P(X < 2) = P(X \le 1)$		M1	
		$4^{4} + 4 \times 0.616 \times 0.384^{3}$	M1	
	= 0.16126 awrt 0.161		Al	
	awrt 0.161		(4)	
(c)	X = The	number of defects per <i>x</i> meters	(
(•)				
	$X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)$		B1	
		$) = P\left(Z < \frac{25.5 - \frac{x}{16}}{\sqrt{\frac{x}{16}}}\right) = 0.5398$		
	P(X < 26)	$) = P \left Z < \frac{16}{\sqrt{r}} \right = 0.5398$	M1	
		$\left(\sqrt{\frac{x}{16}} \right)$		
	25.5 X			
	$25.5 - \frac{16}{16}$	= 0.1	B1 M1	
	$\frac{1}{4}\sqrt{x}$		A1ft	
	4			
	$\frac{\frac{25.5 - \frac{x}{16}}{\frac{1}{4}\sqrt{x}} = 0.1}{\frac{1}{16}x + \frac{1}{40}\sqrt{x} - 25.5 = 0 \rightarrow \sqrt{x} = 20 (\text{or } \sqrt{x} = -20.4)$		M1	
	$\frac{16}{(\sqrt{x})^2} = 20^2$		N/1	
			M1	
	x = 400		A1 (0)	
		Notes	(8) Total 14	
(a)	$\frac{1}{100}$ M1 For writing or using P(X \leq 5)			
(a)	A1	awrt 0.616		
	AI	For $X \sim B(4,0.616)$ Follow through their part (a).		
(b)	B1ft	May be implied by a correct ft expression for the 2 nd M1		
	M1			
	M1	For writing or using $P(X \leq 1)$ (May be implied by $2^{nd} M1$)		
	M1 M1	For writing or using P(X \le 1) (May be implied by 2 nd M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ 0		
		For writing or using P(X \leq 1) (May be implied by 2^{nd} M1)For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4$		
(c)	M1	For writing or using P(X \le 1) (May be implied by 2 nd M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ 0		
(c)	M1 A1	For writing or using P(X \leq 1) (May be implied by 2^{nd} M1)For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4$		
(c)	M1 A1 B1	For writing or using P(X \leq 1) (May be implied by 2 nd M1)For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1Allow calculator value if seen \pm 0.0999(2986)$		
(c)	M1 A1 B1 M1	For writing or using P(X \le 1) (May be implied by 2 nd M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.$		
(c)	M1 A1 B1 M1 B1 M1 M1	For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161correct answer on its own scores 4 out of 4For X \sim N(\frac{x}{16}, \frac{x}{16})May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and variance$	= variance	
(c)	M1 A1 B1 M1 B1 M1 A1ft	For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided mean$		
(c)	M1 A1 B1 M1 B1 M1 M1	For writing or using $P(X \le 1)$ (May be implied by 2^{nd} M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4 For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of for$	mula.	
(c)	M1 A1 B1 M1 B1 M1 A1ft	For writing or using $P(X \leq 1)$ (May be implied by 2^{nd} M1)For $= [{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided mean$	mula.	
(c)	M1 A1 B1 M1 B1 M1 A1ft	For writing or using $P(X \le 1)$ (May be implied by 2^{nd} M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4 For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shown.For correct squaring of both sides. May be implied by 416[.16] from correct equation$	mula.	
(c)	M1 A1 B1 M1 B1 M1 A1ft M1	For writing or using $P(X \le 1)$ (May be implied by 2 nd M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4 For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shown.For correct squaring of both sides. May be implied by 416[.16] from correct equationThis mark may be scored prior to solving a 3TQ, e.g. \left(25.5 - \frac{x}{16}\right)^{2} = \left(\frac{1}{40}\sqrt{x}\right)^{2}.$	mula.	
(c)	M1 A1 B1 M1 B1 M1 A1ft M1 M1	For writing or using $P(X \le 1)$ (May be implied by 2 nd M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4 For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shown.For correct squaring of both sides. May be implied by 416[.16] from correct equationThis mark may be scored prior to solving a 3TQ, e.g. \left(25.5 - \frac{x}{16}\right)^{2} = \left(\frac{1}{40}\sqrt{x}\right)^{2}.Do not award if squaring each individual term$	mula.	
	M1 A1 B1 M1 B1 M1 A1ft M1	For writing or using $P(X \le 1)$ (May be implied by 2 nd M1) For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ $0 awrt 0.161 correct answer on its own scores 4 out of 4 For X \sim N\left(\frac{x}{16}, \frac{x}{16}\right) May be implied by values in standardisation.For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)z = \pm 0.1 Allow calculator value if seen \pm 0.0999(2986)Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.Follow through their mean and varianceA correct equation with compatible signs ft their mean and variance provided meanFor solving their 3 term equation by factorising, completing the square or use of forMay be implied by -20.4, otherwise if answer is incorrect working must be shown.For correct squaring of both sides. May be implied by 416[.16] from correct equationThis mark may be scored prior to solving a 3TQ, e.g. \left(25.5 - \frac{x}{16}\right)^{2} = \left(\frac{1}{40}\sqrt{x}\right)^{2}.$	mula.	

Question Number		Scheme	Marks
6 (a)	[F(k)=1]	\Rightarrow] $ak + bk^2 = 1 \Rightarrow ak = 1 - bk^2 *$	B1*
		1	(1)
(b)	f(x) = a	+2bx	B1
	E(X) =	$\int_0^k \left(ax + 2bx^2\right) \mathrm{d}x \left[=\frac{6}{5}\right] \Longrightarrow \left[\frac{ax^2}{2} + \frac{2bx^3}{3}\right]_0^k \left[=\frac{6}{5}\right]$	M1
	$\frac{ak^2}{2} + \frac{2k}{2}$		dM1, A1
		$20bk^3 = 36$	
	15k(1-l)	M1	
	$5bk^{3} = 3$	6-15 <i>k</i> *	A1*
			(6)
(c)	$E(X^2) =$	$= \int_0^k \left(ax^2 + 2bx^3 \right) \mathrm{d}x \Longrightarrow \left[\frac{ax^3}{3} + \frac{bx^4}{2} \right]_0^k$	M1
	-	$=\frac{ak^3}{3} + \frac{bk^4}{2} - \frac{36}{25} = \frac{22}{75}$	dM1 A1
		$15bk^4 = 52$	
	$10k^{2}(1-bk^{2})+15bk^{4}=52$		
	$5bk^4 = 52 - 10k^2 *$		
			(5)
(d)	$\frac{1}{k} = \frac{36 - 15k}{52 - 10k^2}$		M1
	$5k^2 - 36k + 52 = 0$		A1
	(k-2)(5k-26) = 0		M1
	k = 2		A1
			(4)
(e)	'40' <i>b</i> = 3	$36 - '30' \Rightarrow b = \frac{3}{20} \qquad \text{or} \qquad '80'b = 52 - '40' \Rightarrow b = \frac{3}{20}$ $= 1 \Rightarrow a = \frac{1}{5}$	B1ft
	$2a + \frac{3}{5} =$	$a = 1 \Longrightarrow a = \frac{1}{5}$	B1ft
		Notes	(2) Total 18
(a)	B1*	Answer is given so no incorrect working can be seen	10(4110
(b)	B1	For a correct expression for $f(x)$ (may be implied by a correct expression for E	E(X)
	M1	For an attempt to integrate x f(x) (Ignore limits) at least one $(x^n \to x^{n+1})$. F.	t. their $f(x)$
	M1	f(x) must be a changed expression from $F(x)$ so integrating $xF(x)$ is M0	
	dM1	Dependent on the previous M mark. For equating to $\frac{6}{5}$ and substitution of k	
		(no need to see substitution of lower limit 0).	
	A1 For a correct equation any form		
	M1 For substitution of $ak = 1 - bk^2$ oe into their equation		
	A1*	Answer is given so no incorrect working can be seen	

(c)	M1	For an attempt to integrate $x^2 f(x)$ (Ignore limits) at least one $(x^n \to x^{n+1})$ F.t. their $f(x)$ $x^2 F(x)$ is M0		
	dM1	Dependent on previous M mark. For substitution of correct limits and subtraction of $\frac{36}{25} = \frac{22}{75}$		
	A1	For a correct equation any form		
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation		
	A1*	Answer is given so no incorrect working can be seen		
(d)	M1	For solving simultaneously to set up an equation in <i>k</i> only		
	A1	For a correct 3 term quadratic		
	M1	For solving their 3 term quadratic by factorising, completing the square or using formula. k = 5.2 implies M1A1M1		
	A1	2 only cao. Correct answer on its own scores 4 out of 4		
(e)	B1ft	For $b = \frac{3}{20}$ ft their k $b = \frac{36-15k}{5k^3}$ Common ft answer is $b = \frac{-525}{8788} = \text{awrt} - 0.0597$ coming from choosing $k = 5.2$		
	B1ft	For $a = \frac{1}{5}$ ft their k and their b $a = \frac{1-bk^2}{k}$ Common ft answer is $a = \frac{85}{169}$ = awrt 0.503 coming from choosing $k = 5.2$		