

Mark Scheme (Results)

January 2020

Pearson Edexcel International A Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020 Publications Code WST02_01_MS_2001* All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme			
1 (a)	$P(H=6) = \frac{e^{-4}4^6}{6!}$ or $P(H \le 6) - P(H \le 5) = 0.8893 - 0.7851$			
	= 0.10419 = 0.1042 awrt <u>0.104</u>			
			(2)	
(b)	$J \sim Po(8)$	3)	B1	
	$P(J \le 7) - P(J \le 2) = 0.4530 - 0.0138$			
		= 0.4392 awrt <u>0.439</u>	Al	
		0. 20)	(3)	
(c)	$\Lambda \sim N(2$		MI	
	P(K > 3)	$0) \approx P\left(Z > \frac{30.5 - 28}{\sqrt{28}}\right)$	M1M1A1	
		= P(Z > 0.4724)		
		= 1 - 0.6808	A 1	
		= 0.3192 (calc 0.3183) awrt $0.319/0.318$	AI (5)	
(d)(i)	The p(ro	bability)/0.97 is not small oe	B1	
	P(10		(1)	
(ii)	$L \sim Po(3)$	3)	B1	
	$P(L \le 4)$	= 0.8153 awrt <u>0.815</u>	M1A1	
			(3)	
	Notes			
		Correct answers imply all marks in each part of this question.		
1(a)	M1	Allow any value for lambda $\frac{e^{-\lambda}}{6!}$ or $P(H \le 6) - P(H \le 5)$		
	A1	awrt 0.104		
	Di	Writing Po(8). This may be implied by a correct answer or sight of awrt 0.45.	3 or awrt	
(b)	BI	0.0138 or awrt 0.0424 or awrt 0.313		
	M1	$P(J \le 7) - P(J \le 2)$ oe or (awrt 0.453 – awrt 0.0138)		
	A1	awrt 0.439		
(c)	M1	Using normal approximation with mean = variance = 28 (May be seen in stan which takes priority) or writing N(28,28)	dardisation	
		(30.5 or 30 or 29.5 - their mean)		
	M1	\pm their sd		
		If they have not given a mean and a variance, they must be correct here.		
	M1 Writing or using a continuity correction 30 ± 0.5			
	A1	Correct standardisation with 30.5 or awrt 0.47		
	A1	awrt 0.319/0.318		
(4)(i)	BI	Probability is not small (too large). Allow mean \neq variance.		
(u)(1)		Ignore extraneous non-contradictory comments		
(ii)	B 1	Writing or using Po(3)		
	М1	Writing or using $P(I \le 4)$ or		
1	IVII	writing of using $1(L \ge 4)$ be		
	A1	awrt 0.815 awrt 0.815		

Question	Scheme			Marks	
2(a)	$E \sim B(6,$	$E \sim B(6, 0.35)$			B1
(i)	P(E=2)	$E = 2$) = P($E \le 2$) – P($E \le 1$) or $\binom{{}^{6}C_{2}}{0.35^{2}} (1 - 0.35)^{4}$			M1
	= 0.6471 - 0.3191				
	= 0.3	= 0.328 awrt 0.328			Al
(ii)	$P(E \ge 4)$	$=1-P(E \le 3)$ or $1-0.8826$			M1
		= 0.1174		awrt 0.117	Al
	awit <u>0.117</u>			(5)	
(b)	$H_0: p = 0$	0.35 $H_1: p > 0.35$			B1
	$L \sim B(5)$	$(0, 0.35)$ $P(L \ge 25) = 1 - P(L \le 24)$	$P(L \ge 24)$	= 0.0396	M1
		= 1 - 0.9793	$P(L \ge 23)$	= 0.071	
		= 0.0207	CR L	≥ 24	A1
	Reject H	or Significant or 25 does lie in the critical re	gion		dM1
	There is	evidence to support Kiyoshi's belief oe <u>or</u> that	t the prop o	ortion/number oe of	Alcso
	large eg	gs has increased after adding the supplement			A1030
					(5)
(c)	Expected	l profit before supplement = $"0.1174"\times$	(1.20 + (1 -	"0.1174")×0.60	M1
		$=(\pounds)0.67044$			
	$P(X \ge 4)$) = 0.2553		awrt 0.255	B1
	Expected	l profit per box after supplement = " 0.2553 "×1.	.20 + (1 - "0.2)	2533")×0.60-"0.67044"	M1
		$=(\pounds)0.08274$	4		A1
	OR Expe	ected profit per box after supplement $=$ "0.255	$3"\times 1.20 + (1)$	-"0.2553")×0.60-0.10	(M1)
	$=(\pounds)0.65318$				(A1)
	Kiyoshi should not continue to add the supplement (as $0.0827 < 0.10$ or $0.653 < 0.67[0]$)			Alcso	
				(5)	
				Total 15	
2(a)	B1	B1 Using or writing B(6,0.35) in either part			
(i)	M1	Using or writing $P(E \le 2) - P(E \le 1)$ or writing $\binom{6}{C} 0.35^2 (1-0.35)^4$ or			
(1)	A 1	$= (-2)^{2}$	(2)	(1 111) 30	
(ii)	AI M1	Fither writing or using $P(E \ge 4)$ or $1 - P(E \le 3)$	S) or $P(F = A)$	(1) + P(F = 5) + P(F = 6))e
(11)		awrt 0 117 (Correct answers imply all n	revious mat	(E = 0) + 1 (E = 0)	
(b)	B1	Both hypotheses correct with p or π		(u))	
	M1	Writing or using $L \sim B(50, 0.35)$ and $1 - P(L \le 1)$	≤24)		
		or writing $P(L \ge 24) = 0.0396$ or $P(L \ge 23) = 0.071$ leading to a CR.			
		Condone use of normal approx M ~N(17.5, awrt 11.4) and 1 – P(M < 24.5) for the M1			1
	A1	awrt 0.0207 or $L \ge 24$ allow any letter			
	dM1	dep on previous M being awarded for a correct s	statement (c	ondone Accept H ₁)	
	Aleso	ft their probability or CR Do not allow contradicting non-contextual comments.			
	111030	Need bold words. NB award M1A1 for a correct	et contextual	statement on its own.	
(c)	Note:	Some candidates may multiply by n or an intege	er so allow th	hese multiples throughou	t.
	M1	"their (ii) $\times 1.20 + (1 - "their(ii)") \times 0.60$			
Allow £	B1	awrt 0.255			
or pence	лл1	$ "p" \times 1.20 + (1 - "p") \times 0.60 - "their 0.67044"$	' or " <i>p</i> "×1.	$20 + (1 - p'') \times 0.60 - 0$.10 oe
in part	M1 [where $p > 0.1174$ (do not allow $p = 0.45$ for this mark)				
	A1	A1 awrt $(\pounds)0.083$ or awrt $(\pounds)0.65$			
	A1cso Dep on all previous marks in (c). Correct conclusion with correct supporting figures.				

Question Number		Scheme	Marks		
3(a)	$\frac{3}{4}$		B1		
			(1)		
(b)	$E(T) = \frac{50 + 2k}{2} [= 25 + k]$				
	$\operatorname{Var}(T) =$	$=\frac{(4k)^2}{12}\left[=\frac{4k^2}{3}\right]$	B1		
	$\mathrm{E}(T^2) =$	$\frac{4k^2}{3} + (25+k)^2$	M1		
	$\frac{7k^2}{3} + 62$	25 + 50k = 918.76			
	$7k^2 + 150$	0k - 881.28 = 0	dM1		
	$k = \frac{-150 \pm \sqrt{2}}{2}$	$\frac{150^2 + 4 \times 7 \times 881.28}{14}$	dM1		
	k = 4.8 of	e only	A1		
			(6)		
(c)	P(T < 25)	$f(t) = \frac{1}{4}$	B1		
	B(50, 0.2	25) 2) 1 D (W 12)			
	$P(X \ge 2$	$0) = 1 - P(X \le 19)$	M1		
		= 1 - 0.9861	A 1		
		= 0.0139 awrt 0.0139	A1 (3)		
			Total 10		
		Notes			
(a)	B1	0.75 oe			
(0)	DI	$E(T) = \frac{50+2k}{2} [= 25+k]$ allow equivalent unsimplified expressions			
	B1	$Var(T) = \frac{(4k)^2}{12} \left[= \frac{4k^2}{3} \right]$ allow equivalent unsimplified expressions			
	M1	Using Var(T) + $[F(T)]^2$ or e.g. $\ \frac{4k^2}{4k}\ = F(T^2) - \ (25+k)\ ^2$			
	dM1	Dependent on previous M being awarded. Substituting $E(T^2) = 918.76$, multip	lving out		
	and combining like terms leading to a $3TQ = 0$				
	dM1 Dependent on previous M being awarded. A correct method for solving their quadratic				
	- use of formula (allow one slip), completing the square, factorising. A1 Must have 4.8 oc on its own as answer (must reject $k = -26.2$ if seen)				
		4.8 on its own scores 6 out of 6.			
	ALT	For first 4 marks in (b)			
		$\int_{25-k}^{25+3k} t^2(\frac{1}{4k}) dt = \left[\frac{t^3}{12k}\right]_{25-k}^{25+3k} \to \frac{(25+3k)^3}{12k} - \frac{(25-k)^3}{12k} = 918.76$			
		B2 for correct integral (ignore limits), M1 for attempt at integration $t^2 \rightarrow t^3$, dM1 for limits and = 918.76, then follow main scheme	r use of		
(c)	B1 M1	$\begin{array}{c} 0.25 \\ W_{\text{s}}(x) = 1 P(Y < 10) \end{array}$			
	111	wrung or using $1 - \Gamma(\Lambda \ge 19)$			
	AI	awrt 0.0139			

Question Number	Scheme		Marks
4(a)	$\int_{1}^{2} \frac{1}{3} dt + \int_{2}^{4} k(4t^{2} - t^{3}) dt = 1$		M1
	$\left[\frac{1}{3}t\right]_{1}^{2} + \left[k\left(\frac{4t^{3}}{3} - \frac{t^{4}}{4}\right)\right]_{2}^{4} = 1$		A1
	$\frac{1}{3} + k \left(\frac{64}{3} - \frac{20}{3}\right) = 1 \text{or } \frac{44}{3}k = \frac{2}{3} \text{ leading to } k = \frac{1}{22}$		Alcso
(1,-)			(3)
(6)			B1(shape) dB1 (labels)
	1 2 4 $[t]$		(2)
(c)	$\frac{\mathrm{d}\mathbf{f}(t)}{\mathrm{d}t} = k\left(8t - 3t^2\right)$		(2) B1
	$\frac{dt}{8t-3t^2} = 0$		M1
	$t = \frac{8}{3} \text{ only}$	awrt 2.67	Al
	5		(3)
(d)	$\int_{1}^{t} \frac{1}{3} dx = \left[\frac{x}{3}\right]_{1}^{t}$		M1
	$F(2) + \int_{2}^{t} \frac{1}{22} (4x^{2} - x^{3}) dt = \frac{1}{3} + \left[\frac{4x^{3}}{66} - \frac{x^{4}}{88}\right]_{2}^{t}$ Or $\int \frac{1}{22} (4t^{2} - t^{3}) dt = \frac{2t^{3}}{33} - \frac{t^{4}}{88} + C$ and $F(4) = 1$		M1
	$F(t) = \begin{cases} 0 & t < 1 \\ \frac{1}{3}t - \frac{1}{3} & 1 \le t < 2 \\ \frac{2t^3}{33} - \frac{t^4}{88} + \frac{1}{33} & 2 \le t \le 4 \\ 1 & \text{otherwise} \end{cases}$		A1 A1 A1
(e)	P(T > 3) = 1 - F(3)		(3)
	$= 1 - \left[\frac{4 \times 3^3}{66} - \frac{3^4}{88} + \frac{1}{33}\right]$		M1
	$=\frac{67}{264}$ or 0.2537	awrt 0.254	A1
			(2) Total 15
L			

	Notes					
4(a)	M1	Adding the two integrals together with correct limits and setting = 1 (may be done in				
		stages)				
		Allow $\frac{1}{3}$ instead of first integral				
	A1	Correct integration (again allow $\frac{1}{3}$ instead of first integration)				
	A1cso	Must have at least one line of working before the given answer and no errors				
(b)	B 1	Correct shape with correct curvature				
		Horizontal line, then quadratic (increasing then decreasing as t increases) starting above				
		should be no solid vertical lines				
	dB1	Fully correct with 1, 2 and 4 each labelled at appropriate place on horizontal axis (Ignore				
	•	vertical labelling).				
		e.g.				
		(b) (b)				
		2 4 t 1 2 3 4 t				
		B0B0 (solid vertical line)B1B1Condone curvature				
(c)	B 1	For $k(8t-3t^2)$				
	M1	Putting their differential = 0 ignore missing k				
	A1	Allow awrt 2.67 only				
		For $\int_{-\infty}^{t} dx$ with attempt to integrate. Must have correct limits. Or for integration with +C				
(d)	MI					
		and use of $F(1) = 0$				
	M1	For F(2) + $\int_{2}^{t} \frac{1}{22} (4x^2 - x^3) dx$ and attempt to integrate or				
		1 $1 $ $1 $ 1				
		$\int \frac{1}{22} (4t^2 - t^3) dt = \frac{4t^2}{6} - \frac{t^3}{88} + C$ and using F(4) = 1 or F(2) = $\frac{1}{3}$ - must attempt to				
		~ 22 ~ 60 88				
	4.1	For 2^{nd} line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any				
	AI	letter to be used for this A1 mark)				
	A1	For 3rd line of cdf oe (allow < instead of \leq and vice versa ditto > and \geq) (allow any				
	A 1	letter to be used for this A1 mark)				
	AI	but there must be only one.				
		(allow < instead of \leq and vice versa ditto > and \geq)				
(e)	M1	Attempting to find 1 – F(3) with attempt to use 3^{rd} line of their F(t) or $\int_{0}^{4} k(4t^{2} - t^{3}) dt$				
	1788	$\int J_3 = \int J_3 = J_3 $				
	A1	$\frac{0}{264}$ oe or awrt 0.254				
		204				

Question Number		Scheme		Marks
5(a)	$X \sim Po(4$	4)		M1
0(1)	P(X = 0)	$P = 0.0183$ $P(X \ge 8) = 0.0511$		
	$P(X \le 1)$	$P(X \ge 9) = 0.0214$		
	CR X =	0 oe $X \ge 9$ oe		A1A1
				(3)
(b)	3.97%			B1
				(1)
(c)	6 is not i	n the critical region – the data collected are consistent with Chr	is's claim	B1ft
				(1)
(d)	$\lambda = \frac{2n}{9}$			B1
	1 - P(Y =	= 0) > 0.9		M1
	$1 2^{\frac{2n}{9}}$	0.0		
	2n	0.9		
	$e^{-9} < 0.$	1		
	n = 10 and	and $e^{\frac{2n}{9}} = 0.1083$ or $-\frac{2n}{9} < \ln 0.1$		dM1
	11	$-\frac{2n}{9} = 0.08(77)$		
	n = 11 Therefore	$e^{-y} = 0.080 / /$		A1 cao
	Therefore	n - 11		(4)
(e)	H ₀ : $\lambda =$	10 H ₁ : $\lambda < 10$		B1
	$[W \sim Po]$	(10) $P(W \le 5) =] 0.0671$ or $CR \ W \le 4$		B1
	Do not re	eject H ₀ or insignificant or 5 does not lie in the critical region		M1
	There is :	no significant evidence that the mean number/ rate of whales		Alcso
	has decre	eased.		
				(4) Total 13
		Notes		1014115
(a)	M1	Writing or using Po(4) (may be implied by one correct CR)		
	A1	Either tail $X = 0$ (allow $X \le 0$) or $[18 \ge] X \ge 9$ (allow $X > 8$)	Allow any letters i	in place of X
	A1	Both tails $X = 0$ oe, $[18 \ge]X \ge 9$ oe Allow any letters in place	e of X	
(h)	D1	SC: $P(X = 0)$ and $P(X \ge 9)$ as final answer to score M1A1A0.		
(0)	DI R1ft	Supports this claim and correct reason Allow a correct ft stateme	nt and reason base	ed on their
(0)	DIR	CR		
(d)	B1	writing or using $\frac{2n}{9}$		
	M1	May be implied by $P(Y=0) < 0.1$ (Allow = in place of <)		
	dM1	Dep on previous M mark for solving $e^{-\lambda} < 0.1$. This may be impli	led by $n = awrt 10$.4
		Allow for a trial of any <i>n</i> value or $"-\frac{2n}{2}" < \ln 0.1$ (condone $\frac{2n}{2}$)	2.5) (Allow = in 1	place of <)
	Al	11 cao (Do not allow $n \ge 11$)		. ,
(e)	B1	Both hypotheses with λ or μ (Allow H ₀ : $\lambda = 2$ H ₁ : $\lambda < 2$	2)	
	B1	awrt 0.0671 or $W < 4$	/	
	ЛЛ	Correct statement - ft their probability or CR Do not allow contr	adicting non-cont	extual
	IVIII	comments	-	
	Alcso	Fully correct solution with conclusion in context must have mean/ra NB award M1A1 for a correct contextual statement on its own prov	ate with whales.	rks scored

Question Number	Scheme			Marks	
6(a)	$\mathrm{E}(X^2) =$	$X^{2}) = \int_{-1}^{1} \frac{1}{8} \left(x^{4} + 2x^{3} + x^{2} \right) dx + \int_{1}^{\frac{11}{3}} \frac{1}{4} x^{2} dx$			M1
	=	$= \left[\frac{1}{8}\left(\frac{x^5}{5} + \frac{2x^4}{4} + \frac{x^3}{3}\right)\right]_{-1}^{1} + \left[\frac{x^3}{12}\right]_{1}^{11}$			A1
	=	$=\frac{1684}{405}$			
	$Var(X) = \left[\frac{1684}{405} - \left(\frac{31}{18}\right)^2\right]$				dM1
		$=\frac{1931}{1620}$ or 1.1919		awrt <u>1.19</u>	A1
		N I			(4)
(b)	$P\left(X < -\right)$	$\frac{1}{2} = \int_{-1}^{-0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ or 1-	$\int_{-0.5}^{0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ (gets		MI
	$P\left(X > \frac{1}{2}\right)$	$\frac{1}{2} = \frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} \left(x^2 + 2x + 1 \right) dx M2)$	0		M1
	$P\left(X < -\frac{1}{2}\right) = \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8}\right]_{-1}^{-0.5} \text{ or } P\left(X > \frac{1}{2}\right) = \frac{2}{3} + \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8}\right]_{0.5}^{1}$				A1
	$\left[\mathbf{or} 1 - \left[\frac{x^3}{24} + \frac{x^2}{8} + \frac{x}{8} \right]_{-0.5}^{-0.5} \right]$				
	$=\frac{83}{96}$ or 0.8645 awrt <u>0.865</u>				Al
				(4)	
		N 4			Total 8
		In narts (a) and (b) a correct ans	es wer does NOT imply all mark	KS .	
(a)	M1	For attempt at $\int x^2 f(x) dx$ for both part	rts of $f(x)$ added and attempt to int	tegrate $x^n \rightarrow$	x^{n+1}
	A1 dM1	Correct algebraic integration (ignore dep on previous M1 for "an expression	limits). This mark cannot be implied on for their $E(X^2)$ " – $[E(X)]^2$	led.	
	A1	Values must be substituted here awrt 1.19			
(b)		Main scheme method	Alternative method using $F(r)$)	
	M1	$\int_{-\infty}^{-0.5} \frac{1}{2} (x^2 + 2x + 1) dx \text{ oe}$	$\int_{-\infty}^{x} \frac{1}{2} (t^{2} + 2t + 1) dt \text{ or } \int_{-\infty}^{1} \frac{1}{2} (x) dt$	$(x^{2}+2x+1)dx$	with + C
	M1	$\frac{2}{3} + \int_{0.5}^{1} \frac{1}{8} \left(x^2 + 2x + 1 \right) dx \text{ oe}$	Use of $F(-0.5) + (1 - F(0.5))$	oe	
	NB	$1 - \int_{-0.5}^{0.5} \frac{1}{8} (x^2 + 2x + 1) dx$ gets M2	Note: $F(-0.5) = \frac{1}{192}$ and $F(0.5) = \frac{1}{192}$	$5) = \frac{9}{64}$	
	A1 One correct integration (may be implied by $\frac{1}{192}$, $\frac{9}{64}$ or $\frac{55}{64}$) $F(x) = \frac{1}{8} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right)$ (from $-1 < x < 1$)			- 1)	
	A1 $\frac{83}{96}$ or awrt 0.865 must come from correct working and dependent on all previous marks			ous marks.	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom