Question Number		Scheme	Marks	
1 (a)	[Mode =	1137	B1	
- ()	[1/20 00] 107	(1)	
	<i>a</i> = 106		B1	
(b)	<i>b</i> = 129		B1	
	<i>c</i> = 126		B1	
			(3)	
(c) (i)	[mean =	$\left[\frac{4016}{31}\right] = 129.5$	B1	
(ii)	[Standar	d deviation =] $\sqrt{\frac{525056}{31} - \left(\frac{4016}{31}\right)^2}$ or $\sqrt{\frac{31}{30}\left(\frac{525056}{31} - \left(\frac{4016}{31}\right)^2\right)}$	M1	
	=12.4 o	r 12.6	A1	
			(3)	
(d)	<u>'129.5'-</u> '12.4	$\frac{137}{4} = -0.6$	M1	
	Negative	e [skew]	Alft	
			(2)	
(e)		t difference of the average or a correct difference of the spread average action films run for longer than comedy films as the median is 29 > 117	B1ft	
		NY 4	(1)	
	D1	Notes	Total 10	
(a)	B1	Cao Must be seen in part (a)		
(b)	B1	$a = 106$ Must be attached to a (Condone Q_1 /lower quartile for a)		
	B1	$b = 129$ Must be attached to b (Condone Q_2 /median for b)		
	B1	$c = 126$ Must be attached to c (Condone Q_3 /upper quartile for c)		
(c) (i)	B1	awrt 130		
(ii)	M1	For a correct method (including the square root) to find the standard deviation. Ft their mean May be implied by awrt 12.4 or awrt 12.9 or awrt 12.6 if sample standard deviation is calculated		
	A1	awrt 12.4 or awrt 12.6 if sample standard deviation is calculated Correct answer onl	y scores 2/2	
(d)	M1	For substitution of the mode, the mean and the standard deviation into the expressio mode, their mean and their standard deviation. Allow awrt -0.6 if no working shows		
	A1ft	A correct interpretation ft their expression. Ignore any reference to correlation		
(e)	B1ft	for a correct comment, referring to length , with reference to a correctly named sta include the correct figures compared. Ft their values. Ignore any reference to skew		

The following table may be useful (but not an exhaustive list of possible answers)

Statistic	Α	С	Comment
Median	129	117	On average action films run for longer as the median is greater 129 > 117
Mean	129.5	114.5	On average action films have a greater running time as the mean is greater 129.5 > 114.5
Mode	137	127	On average comedy films are shorter in length as the mode is less 127 < 137
IQR	17	20	Comedy films have a greater spread of running times as the IQR is greater 20 > 17
Range	57	39	Action films have a larger variation of running times as the range is greater 57 > 39
SD	12.4	11.9	Comedy films show less variability in the length of films as the SD is less 11.9 < 12.4

Question Number		Scheme				
2 (a) (i)	$S_{yy} = 819$	$S_{yy} = 81938.5 - \frac{2015^2}{50} [= 734] *$				
(ii)	$r = \frac{219.55}{\sqrt{734 \times 72.25}} = 0.95338$ awrt 0.953					
(b)	e.g. [In g	e.g. [In general] the longer the rabbit the greater the weight				
(a)	Consiste	nt/Yes as <i>r</i> /PMCC is close to 1	(1) B1ft			
(c)	Consiste	III/ Yes as P/PIVICC is close to 1	ын (1)			
(d)	$b = \frac{219}{73^2}$	$\frac{55}{4} = 0.2991$	M1 A1			
	$a = \left(\frac{125}{50}\right)$	$\left(\frac{2015}{50}\right) = -9.554]$	M1			
	w = -9.5	5 + 0.299y	A1			
			(4)			
(e)	'-9.55'+	'-9.55'+'0.299'×45=3.905 awrt 3.91				
		NT /	(2)			
(a)(i)	B1*	Notes Answer is given so a correct numerical expression and no incorrect working seen	Total 11			
(a)(i)	DI	Answer is given so a correct numerical expression and no incorrect working seen				
1		C C				
(ii)	M1	For use of $\frac{S_{yw}}{\sqrt{S_{yy} \times S_{ww}}}$ May be implied by awrt 0.953				
(ii)	M1 A1	For use of $\frac{S_{yw}}{\sqrt{S_{yy} \times S_{ww}}}$ May be implied by awrt 0.953 awrt 0.953				
(ii)		awrt 0.953	es the			
(ii) (b)						
(b)	A1 B1ft	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increaseweight/w increases Ignore any figures quoted. Do not accept comments about correlationown	tion on their			
	A1	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increasesweight/w increases Ignore any figures quoted. Do not accept comments about correlation	tion on their			
(b)	A1 B1ft	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increasesweight/w increases Ignore any figures quoted. Do not accept comments about correlationownA correct statement with a correct reason ft their r value (provided that $ r < 1$) Allow	tion on their			
(b) (c)	A1 B1ft B1ft	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increaseweight/w increases Ignore any figures quoted. Do not accept comments about correlaownA correct statement with a correct reason ft their r value (provided that $ r < 1$) AllowAllow 'my value' to imply r	ttion on their v $0.953 \approx 1$			
(b) (c)	A1 B1ft B1ft M1	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increaseweight/w increases Ignore any figures quoted. Do not accept comments about correlaownA correct statement with a correct reason ft their r value (provided that $ r < 1$) AllowAllow 'my value' to imply rA correct method to find the gradient (May be implied by awrt 0.299 or $\frac{4391}{14680}$)awrt 0.299 (Condone awrt 0.3 if M1 scored) May be implied by a correct gradient in	ttion on their v $0.953 \approx 1$			
(b) (c)	A1 B1ft B1ft M1 A1	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increasesweight/w increases Ignore any figures quoted. Do not accept comments about correlaownA correct statement with a correct reason ft their r value (provided that $ r < 1$) AllowAllow 'my value' to imply rA correct method to find the gradient (May be implied by awrt 0.299 or $\frac{4391}{14680}$)awrt 0.299 (Condone awrt 0.3 if M1 scored) May be implied by a correct gradient in regression line.	ttion on their v $0.953 \approx 1$			
(b) (c)	A1 B1ft B1ft M1 A1 M1	awrt 0.953A correct interpretation ft their r value (provided that $ r < 1$) e.g as length/y increasesweight/w increases Ignore any figures quoted. Do not accept comments about correlationownA correct statement with a correct reason ft their r value (provided that $ r < 1$) AllowAllow 'my value' to imply rA correct method to find the gradient (May be implied by awrt 0.299 or $\frac{4391}{14680}$)awrt 0.299 (Condone awrt 0.3 if M1 scored) May be implied by a correct gradient in regression line.A correct method to find the intercept ft their b (May be implied by awrt -9.55)	ttion on their v $0.953 \approx 1$			

S1_2024_10_MS

Question Number		Scheme	Marks
3 (a)		Cooking 29 29 14 17 14 17 11 42 32 Sport	B1 B1 B1
(b) (i)	$\frac{'14'}{200}$		(3) B1ft (1)
(ii)	<u>'33'+'11</u>	$\frac{1+42+32}{200} = \frac{118}{200} \text{or} \frac{200-29-22-14-17}{200} = \frac{118}{200}$	M1 A1
(c)		$\frac{4'+'11'}{2'+'22'+'33'} = \frac{25}{80}$	(2) M1 A1
		Notes	(2) Total 8
(a)	B3	For a fully correct Venn diagram (B2 for at least 6 numbers in the correct place on the Venn diagram) (B1 for at least 3 numbers in the correct place on the Venn diagram) Treat blanks on the diagram as zero Condone correct probabilities instead of frequencies e.g. $\frac{22}{200}$ oe or 0.11 as 22	
(b) (i)	B1ft	For $\frac{'14'}{200}$ oe ft their Venn diagram	
(ii)	M1	$\frac{'33'+'11'+'42'+'32'}{200} \text{ or } \frac{200-'29'-'22'-'14'-'17'}{200} \text{ ft their Venn diagram. N}$	lay be implied
		by $\frac{118}{200}$ oe	
	A1	by $\frac{118}{200}$ oe For $\frac{118}{200}$ oe	
(c)	A1 M1	118	

Question Number		Scheme	Marks			
4 (a)	$X \square N(1)$	$X \square N(170, 16^2)$				
	P(X > 1)	$P(X > 190) = P\left(Z > \frac{190 - 170}{16}\right) \left[= P(Z > 1.25)\right]$				
	[=1-0.8	944]=0.1056 awrt 0.106	A1			
			(2)			
(b)	P(X > d	() = 0.9				
	$\frac{d-170}{16}$ =	$=-1.2816$ or $\frac{170-d}{16}=1.2816$ (Calc value ± 1.28155)	M1 A1			
	d = 149.4	.494 awrt 149 d				
		Notes	Total 5			
		NB correct answers with no working scores no marks				
(a)	M1	For standardising using 190, 170 and 16 (May be implied by 1.25)				
	A1	awrt 0.106 Do not ISW				
(b)	M1	For standardising and setting = z value, where $1 < z < 2$				
	A1	A fully correct standardisation = a correct compatible z value to 4 dp or better.				
	dA1	dA1 Dependent on previous A1 149.5 or awrt 149				

S1_2024_10_MS

Question Number		Scheme	Marks			
5 (a)	[Time is] continuous			B1		
				(1)		
			64 photographers = 640 small squares			
(b)	or $\frac{16}{160} = 0.1$ or $\frac{64}{640} = 0.1$ or $\frac{160}{16} = 10$ or $\frac{640}{64} = 10$			M1		
	Frequen	cy density $= 1.6$ or Correct scale	e on the frequency density axis			
	$\frac{x}{240} = \frac{1}{1}$	$\frac{16}{60}$ or $\frac{(20-12)}{10} \times 16 + \frac{(24-12)}{5}$	$\frac{20)}{12} \times 14$	M1		
	= 24			A1		
				(3)		
(c)		Using <i>n</i>	Using $n + 1$			
	$[Q_2 =]20$	$0 + \frac{(32-21)}{35-21} \times (25-20)$ oe	$[Q_2 =] 20 + \frac{(32.5 - 21)}{35 - 21} \times (25 - 20)$ oe	M1		
	or 25-	$\frac{35-32}{35-21}$ × (25-20) oe	or $25 - \frac{35 - 32.5}{35 - 21} \times (25 - 20)$ oe	111		
	= awrt 2	3.9	= awrt 24.1	A1		
				(2)		
(d)	Mean = Median or Mean \approx Median			M1		
	e.g. Appropriate decision. Consistent with expectation for a normal distribution.			Alft		
			Notes	(2) Total 8		
(a)	B1	Allow not discrete	10tes	IUtalo		
			hotographers and area or calculating frequency d	lensity (may be		
(b)	M1	implied by 2 nd M1)		5 3		
	M1	For a correct ratio or expression u				
	A1 Cao					
(c)	M1	For a correct method to find median using either n or $n + 1$				
	A1	awrt 23.9 or awrt 24.1 if using <i>n</i> +	- 1			
		For a correct comment about mean and median ft their median				
(d)	M1	M1 Allow mean is close to median to imply mean \approx median				
	Ignore any comments made about the shape of the histogram					
	For a correct compatible comment about Charlie's decision ft their median If Mean = Median or Mean \approx Median, then the decision should be that a normal di			stribution is		
	A1ft suitable [due to symmetry]					
			lian or mean \neq median, then the decision should	be that a		
		normal distribution is not suitable	[due to the skew in the data]			

Question Number		Scheme	Marks		
6(a)	10k = 1	$\Rightarrow]k = 0.1$	B1		
			(1)		
(b)	e.g. P(X	X = 1 = 0.1 and P(X = 2)[=F(2) - F(1)] = 0.1	B1		
	e.g. $P(X = 3) [= F(3) - F(2)] = 0.1$				
	$\frac{X}{P(X=x)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		
			(3) M1		
(c)	a + a + a + b + b + b + 0.11 + 0.05 = 1 [3a + 3b = 0.84]				
		$3a + 4b + 5b + 6b + 0.77 + 0.4 = 4.02 [\Rightarrow 6a + 15b = 2.85]$	M1		
	e.g. 9 <i>a</i> =	$=1.35 \Longrightarrow a = 0.15^{*}$	A1*		
(d)	b = 0.13		(3)		
(u)	$E(Y^2) =$	$1^2 \times 0.15 + 2^2 \times 0.15 + 3^2 \times 0.15 + 4^2 \times 0.13' + 5^2 \times 0.13' + 6^2 \times 0.13'$	M1 A1*		
	$+/^{2} \times 0.1$	$11+8^2 \times 0.05 = [20.7]^*$			
(e)	$\left[Var(Y) \right]$	=]20.7-4.02 ² [=4.5396]	(2) M1		
(0)	L /	2Y) = 4Var(Y) = 4×'4.5396' = 18.1584 awrt 18.2	M1 A1		
	v ur (5		(3)		
(f)	$'0.1 \times 0.15 + '0.1 \times 0.15 = 0.03$				
		•••	(2)		
(a)	B1	Notes For $k = 0.1$ oe	Total 14		
(b)	B1	For correct use of $F(x)$ to find 2 probabilities May be implied by two correct probabi	lities		
(-)	For correct use of $F(x)$ to find one other probability. May be implied by one other correct				
	1411	probabilityFor a fully correct probability distribution. Need not be in a table but probabilities m	ust bo		
	A1	attached to the correct X values	ust de		
(c)	M1	For use of the sum of the probabilities = 1 to form a linear equation in <i>a</i> and <i>b</i> (May by $3a + 3b = 0.84$)	be implied		
	M1	For use of $\sum y \times P(Y = y) = 4.02$ to form a linear equation in <i>a</i> and <i>b</i>			
	IVII	(May be implied by $6a + 15b = 2.85$)			
	A1*	Answer is given so there must be a correct line between the 2 equations and the given			
(d)	M1	For finding $E(Y^2)$ with their <i>b</i> (At least 4 correct terms). Values for <i>a</i> and <i>b</i> must be into their expression for $E(Y^2)$	substituted		
	A1*	For a fully correct expression (no incorrect working seen) eg. $14 \times 0.15 + 77 \times 0.13 + 49 \times 0.11 + 64 \times 0.05$			
		Allow 0.15 + 0.6 + 1.35 + 2.08 + 3.25 + 4.68 + 5.39 + 3.2			
(e)	M1	For a correct expression for $Var(Y)$ May be implied by awrt 4.54			
	М1	For use of $4Var(Y)$ ft their $Var(Y)$ provided $Var(Y)$ is not 20.7 or 4.02 Do not allow $5 + 4Var(Y)$			
	M1	Allow $Var(5 - 2Y) = \frac{137}{5} - \left(-\frac{76}{25}\right)^2$ ft their $E(5 - 2Y)$ and their $E((5 - 2Y)^2)$			
	A1	awrt 18.2			
(f)	M1	For use of $P(X=1) \times P(Y=2) + P(X=2) \times P(Y=1)$ ft their X distribution probabilit	ies		

Question Number		Scheme		Marks	
7 (a)	$\frac{n}{2n+1}$	$\begin{array}{c c} n-1 & \text{Red} \\ \hline 2n & \text{Red} \\ \hline 2n & \text{Black} \\ \hline n & \hline 2n & \\ \hline \hline 2n & \text{Red} \\ \hline \end{array}$	$\frac{n}{2n+1}$ and $\frac{n+1}{2n+1}$ in the correct places on the tree diagram	B1	
	$\frac{n+1}{2n+1}$	Black 2 <i>n</i> Red	$\frac{n-1}{2n}$ and $\frac{n+1}{2n}$ in the correct places on the tree diagram	B1	
		$\frac{n}{2n}$ Black	$\frac{n}{2n}$ and $\frac{n}{2n}$ in the correct places on the tree diagram	B1	
				(3)	
(b)	$\frac{n}{2n+1}$	$(\frac{n+1}{2n} + \frac{n+1}{2n+1}) \times \frac{n}{2n}$		M1	
	$=\frac{2n(n+1)}{2n(2n+1)}$	$\frac{n+1}{n+1} = \frac{n+1}{2n+1} *$		A1*	
		25		(2)	
(c)	$\frac{n+1}{2n+1} = \frac{25}{49} \Longrightarrow n = 24 \qquad \text{So 49 counters in the box} \qquad M$				
	25 2	A		(2)	
(d)	$\frac{\frac{25}{49} \times \frac{24}{48}}{\frac{25}{49}} = \frac{1}{2}$ M1 A1				
				(2)	
			otes	Total 9	
(a)	B1	For $\frac{n}{2n+1}$ and $\frac{n+1}{2n+1}$ in the correction			
	B1	1 For $\frac{n-1}{2n}$ and $\frac{n+1}{2n}$ in the correct places on the tree diagram			
	B1	For $\frac{n}{2n}$ and $\frac{n}{2n}$ in the correct places on the tree diagram. Allow $\frac{1}{2}$ for $\frac{n}{2n}$ in both places			
(b)	M1	For use of $P(\text{Red}) \times P(\text{Black}) + P(\text{Black}) \times P(\text{Red})$ ft their tree diagram			
	A1*	Answer is given so no incorrect working can be seen. Must have at least one correct line of working between M1 and the given answer.			
(c)	M1	For solving to find $n = 24$			
	A1	Cao			
1	M1 For a correct ratio ft their <i>n</i> and their tree diagram Allow a correct ratio in terms of <i>n</i> e.g. $\frac{\frac{n+1}{2n+1} \times \frac{n}{2n}}{\frac{n+1}{2n+1}}$ or ft their tree diagram for the numerator				
(d)	M1	Allow a correct ratio in terms of n	e.g. $\frac{2n+1}{2n+1}$ of their tree diagram for the n $\frac{n+1}{2n+1}$	numerator	

Question Number		Scheme		Marks	
8 (a)	$\frac{162 - \mu}{\sigma} = -1.2816 \text{ (Calculator gives } -1.28155)}$ or $\frac{175 - \mu}{\sigma} = 1.04 \text{ (Calculator gives } 1.03987)}$ $\mu - 1.2816\sigma = 162$			M1 A1 A1	
	$\mu + 1.04$				
	$\mu + 1.0 + 0$ 2.3216 σ			dM1	
	$\sigma = 5.59$	-	4 awrt 169	Al	
	0 - 5.57	$\mu = 105.170$	T awit 109	(5)	
(b)	Q = 208	3.26 or $Q_3 - Q_1 = 13.48$		B1	
			O = 1.5(221.74 + 0.0) - 199.041		
		$-1.5(221.74 - 'Q_1') = 241.96$ or '		M1	
	_	Probability of an outlier 241.96′) =]	1 – Probability of not an outlier		
	$P\left(Z > -\frac{1}{2}\right)$ or $\left[P\left(B < \frac{1}{2}\right)\right]$ $P\left(Z < -\frac{1}{2}\right)$ or	$\frac{241.96'-215}{10} = P(Z > 2.70)$ $\frac{188.04'}{10} = \frac{1}{10} = P(Z < -2.70)$	$\begin{bmatrix} P('188.04' < B < '241.96') = \end{bmatrix}$ $P\left(\frac{'188.04' - 215}{10} < Z < \frac{'241.96' - 215}{10}\right)$ $[= P(-2.70) < Z < P(2.70)]$	dM1	
		5 (Calculator gives 0.0034883)	= 0.993 (Calculator gives 0.99298)		
	· · ·	$er) = 2 \times 0.0035'$ (Calculator gives 0.006976) awrt 0.007	P(Outlier) = 1-'0.993' = 0.007 (Calculator gives 0.007017) awrt 0.007	M1 A1	
				(5)	
			ites	Total 10	
(a)	M1	For standardising with μ and σ and	d setting = to a z value with $ z > 1$		
	A1	For one correct equation in any form with correct z value as given or better			
	A1	For a 2^{nd} correct equation in any form allow 2dp or better for the <i>z</i> value			
	dM1	both correct answers) If answers are	ving their 2 linear simultaneous equations (Can b incorrect then we need to see evidence of correct		
	A1	For $\mu = \text{awrt } 169 \text{ and } \sigma = \text{awrt } 5.6$			
(b)	B1	For $Q_1 = 208.26$ or $Q_3 - Q_1 = 13.48$ Do not accept rounded values			
	Л/1	For a correct method for finding 1 outlier limit, ft their Q_1 or their IQR. You will need to			
	M1 $\int dt $				
	dM1	Dependent on previous M1. For standardising using their limit(s), 215 and 10 (allow implied by \pm awrt 2.70 or awrt 0.0035 or awrt 0.993 or final answer of awrt 0.007			
	M1	M1 If using the LHS of the MS: for multiplying their probability by 2 or If using the RHS of the MS: for 1 – their probability May be implied by awrt 0.007			
	A1	awrt 0.007			