		P4 2025 01 MS		
Questi Numb	on Scheme	Marks		
1	Volume = $\int_{0}^{8} \frac{16\pi}{(x+2)^{2}} (dx)$ oe e.g. $\pi \int_{0}^{8} \left(\frac{4}{x+2}\right)^{2} (dx)$	B1		
	$\int \frac{16}{(x+2)^2} \mathrm{d}x = \frac{-16}{(x+2)} \text{or e.g.}$	M1 A1		
	$u = x + 2 \Longrightarrow \int \frac{16}{\left(x+2\right)^2} \mathrm{d}x = \int \frac{16}{u^2} \mathrm{d}u = \frac{-16}{u}$			
	$\left[\frac{-16\pi}{(x+2)}\right]_{0}^{8} = \frac{-16\pi}{10} - \left(\frac{-16\pi}{2}\right) \text{ or e.g. } \left[\frac{-16\pi}{u}\right]_{2}^{10} = \frac{-16\pi}{10} - \left(\frac{-16\pi}{2}\right)^{10} = \frac{-16\pi}{10} - \left(\frac{-16\pi}{10}\right)^{10} = \frac{-16\pi}{10} - \frac{-16\pi}{10} $	$\left(\frac{-16\pi}{2}\right)$ M1		
	$=\frac{32}{5}\pi$	A1		
		(5)		
		(5 marks)		
B1:	Correct expression for the volume in terms of <i>x</i> including the limits (which may be implied by		
	later work). Condone omission of the "dx" but the correct integral with 16π included must be seen or implied.	th the correct limits and the		
M1:	For $\int \frac{\dots}{(x+2)^2} (dx) \rightarrow \frac{\dots}{x+2}$ or e.g. $\dots (x+2)^{-1}$ where "" are non-z	zero constants.		
	Or e.g. $\int \frac{\dots}{(x+2)^2} dx = \int \frac{\dots}{u^2} (du) \to \frac{\dots}{u}$ or e.g. $\dots u^{-1}$ where "" are non-zero constants.			
A1:	$\int \frac{16}{(x+2)^2} (dx) = \frac{-16}{(x+2)} \text{ or } \frac{-16}{u} \text{ where } u = x+2. \text{ Ignore any refer}$	• $\frac{16}{(x+2)^2}(dx) = \frac{-16}{(x+2)}$ or $\frac{-16}{u}$ where $u = x+2$. Ignore any reference to π which could		
be	e 2π or e.g. 180°. The limits are not required for this mark so you can	ignore any that are given.		
M1:	Substitutes the limits 0 and 8 into their attempted integration of $\frac{1}{(x+x)^2}$	$\left(\frac{1}{2}\right)^2$ or e.g. 2 and 10 into		
	their attempted integration of $\frac{1}{u^2}$ and <u>subtracts</u> either way round. All	low this mark following		
	poor attempts at integration, e.g. $\int \frac{\dots}{(x+2)^2} (dx) \rightarrow \ln(x+2)^2$ but it must be a "changed"			
	function e.g. not $\int \frac{\dots}{(x+2)^2} (dx) \to \frac{\dots}{(x+2)^2}$ and it must an expression	on that can be evaluated		
	e.g. not expressions containing $\frac{1}{x}$ or e.g. $\ln x$ that cannot be evaluated	ed at $x = 0$		
	If the integration is incorrect and the substitution of limits is not seen need to check their answer.	explicitly then you may		
A1:	$\frac{32}{5}\pi$ or exact equivalent e.g. $\frac{64\pi}{10}$, 6.4π following fully correct wor	k.		
	Note $\int_{0}^{8} \frac{16\pi}{(x+2)^2} dx = \frac{32}{5}\pi$ on its own scores B1M0A0	0M0A0		

Question Number	Scheme	24_20	25_Marks1S
2(a)	$2^x \rightarrow 2^x \ln 2$		B1
	$y^2 \rightarrow \dots y \frac{\mathrm{d}y}{\mathrm{d}x}$		M1
	$4x^2y \to \dots x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + \dots xy$		M1
	$3 + 10y \frac{dy}{dx} + 4x^2 \frac{dy}{dx} + 8xy = 10 \times 2^x \ln 2$		A1
	$\left(10y + 4x^{2}\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 10 \times 2^{x}\ln 2 - 3 - 8xy \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \dots$		M1
	$\frac{dy}{dx} = \frac{10 \times 2^{x} \ln 2 - 3 - 8xy}{10y + 4x^{2}}$		A1
			(6)
B1: Co	prrect differentiation $2^x \rightarrow 2^x \ln 2$		
M1: Fo	$y^2 \rightarrow \dots y \frac{dy}{dr}$ where is a non-zero constant.		
M1: Fo	r $4x^2y \rightarrowx^2 \frac{dy}{dt} +xy$ where are non-zero constants.		
A1: Co	dx brrect differentiation e.g.		
3+10	$0y\frac{dy}{dx} + 4x^2\frac{dy}{dx} + 8xy = 10 \times 2^x \ln 2 \text{ or e.g. } 3 + 10y\frac{dy}{dx} + 4x^2\frac{dy}{dx} + 8xy - 1$	0×2^{x}	$\ln 2 = 0$
Co	Condone a spurious " $\frac{dy}{dx}$ = " e.g. $\frac{dy}{dx}$ = 3+10 $y\frac{dy}{dx}$ + 4 $x^2\frac{dy}{dx}$ + 8 xy = 10× 2 ^x ln 2		
M1: A	valid attempt to make $\frac{dy}{dx}$ the subject by factorising $\frac{dy}{dx}$ from exactly two different terms in		
$\frac{d}{dt}$	which have come from differentiating $5y^2$ and $4x^2y$ and then dividing	by the	e terms in
the	e bracket. Note that here, 2 different terms means terms such as $y \frac{dy}{dx}$ and	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	and not
e.į	g. $y \frac{dy}{dx}$ and $3y \frac{dy}{dx}$. Look for $(\dots \pm \dots) \frac{dy}{dx} = \dots \Rightarrow \frac{dy}{dx} = \dots$ which may be impli-	ied.	
$\frac{dy}{dz}$	must be non-zero and in terms of x and y.		
C	ondone slips provided the intention is clear and the above conditions are s	satisfie	ed.
F	or those candidates who had a spurious $\frac{dy}{dx} = \dots$ at the start, they may incorport	porate	this in their
rea	arrangement in which case they will have 3 terms in $\frac{dy}{dx}$ and so score M0.		
A1: $\frac{dy}{dx}$	$\frac{y}{x} = \frac{10 \times 2^x \ln 2 - 3 - 8xy}{10y + 4x^2}$ or any equivalent correct expression e.g. $\frac{2^x \ln 2}{10x^2}$	$\frac{2-0.3}{v+0.4}$	$\frac{-0.8xy}{4x^2}$
N	ote than some candidates may divide though by 10 initially e.g.	,	
30	$x + 5y^2 + 4x^2y = 10(2^x) + 35 \Longrightarrow 0.3x + 0.5y^2 + 0.4x^2y = 2^x + 3.5$ and full matrix	arks ar	re available for
eq	uivalent work in (a) and (b). Note that 2^x may appear correctly as $e^{x \ln 2}$.		

2(k)	At $x = 0$ $5y^2 = 45 \Rightarrow y = 3$ P4 2	025 01 MS
		$r = 0, y = 3 \implies dy = 10 \times 2^{\circ} \ln 2 - 3 - 8 \times 0 \times 3 = 10 \ln 2 - 3$	MIA1
		$x = 0, y = 3 \implies \frac{1}{dx} = \frac{10 \times 3 + 4 \times 0^2}{30} = \frac{30}{30}$	
			(2)
Notes	:		
M1:	Full	method of finding the gradient.	
	Req	uires:	
		• substituting $x = 0$ into the equation for <i>C</i> and finding a non-zero value for be concerned about the processing as long as they are using $x = 0$ in the equation and finding a non-zero value for <i>y</i>	or <i>y</i> . Do not ation for <i>C</i>
		• substituting $x = 0$ and their non-zero y at $x = 0$ into their $\frac{dy}{dx}$ to find a nu	merical value
	This	s may be implied by their value.	
	Con	done slips in copying their $\frac{dy}{dx}$ from part (a) if the intention is clear.	
	If th but i	ey have a " $\ln x$ " term on the rhs then condone " $\ln 0$ " appearing as part of their if no substitution is shown in such cases, score M0	substitution
A1:	<u>101</u>	$\frac{\ln 2 - 3}{30}$ or e.g. $\frac{1}{3} \ln 2 - \frac{1}{10}$, $\frac{\ln 2^{10} - 3}{30}$, $\frac{\ln 1024 - 3}{30}$ from correct work.	
	App	ly isw once a correct answer is seen.	
	The	re must be no other answers e.g. some candidates use $y = \pm 3$ to give 2 gradie	ents.
	The	re are many different incorrect expressions for $\frac{dy}{dx}$ that will give the correct and	nswer here so
	this	must follow a correct $\frac{dy}{dx}$ in part (a).	
			(8 marks)

Quest Num	tion ber	Scheme P4_20	25_Markns
3 (a)	$B = 6 \times 4^{-\frac{1}{2}} = 3$	B1
		$3 \times \left(-\frac{1}{2}\right) \left(\frac{A}{4}\right) = -\frac{1}{4} \Longrightarrow A = \frac{2}{3}$	M1 A1
		$C = 3 \times \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2} \left(\frac{A}{4}\right)^2 \Longrightarrow C = \frac{1}{32}$	M1 A1
			(5)
Notes			
(a)			
BI: M1.		$B = 3$ which may be implied by their expansion e.g. $3 \pm$	
1411.	Au	1 (4r) = 1	
	Lo	ok for $-\frac{1}{2} \times \left(\frac{m}{m}\right) = -\frac{1}{4}x$ o.e. where <i>m</i> could be 1 leading to a value for <i>A</i> .	
	Мι	ast be consistent with their $\left(1+\frac{A}{m}x\right)^2$ but condone the omission of the "3".	
	No	te the omission of the "3" (if correct) leads to $A = 2$.	
A1:	A :	$=\frac{2}{3}$ or an exact equivalent or e.g. 0.6	
	Al	low if seen embedded in $6(4+Ax)^{-\frac{1}{2}}$	
M1:	At	tempt to find C condoning the omission of their "3".	
	Lo	ok for $\frac{\left(-\frac{1}{2}\right)\times\left(-\frac{3}{2}\right)}{2}\times\left(\frac{A}{m}\right)^2 = \dots$ or $\frac{\left(-\frac{1}{2}\right)\times\left(-\frac{3}{2}\right)}{2}\times\left(\frac{Ax}{m}\right)^2 = \dots$ oe with their nu	merical
	val	ue of A leading to a value for C	
		$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)^{-\frac{1}{2}}$	
	Мι	ist be consistent with their $\left(1 + \frac{A}{m}x\right)^2$ where <i>m</i> could be 1	
	No	te the omission of the "3" (if correct) with a correct A leads to $C = \frac{1}{96}$.	
A1:	C	$=\frac{1}{32}$ oe e.g. 0.03125	
	Al	low if seen embedded in their expansion.	

P4 2025 01 MS

$$6(4+Ax)^{-\frac{1}{2}} = 6 \times 4^{-\frac{1}{2}} \left(1 + \frac{A}{4}x\right)^{-\frac{1}{2}} = 3\left(1 - \frac{A}{8}x + \frac{3A^2}{128}x^2 - \frac{5A^3}{1024}x^3 + \dots\right)$$
$$= 3 - \frac{3A}{8}x + \frac{9A^2}{128}x^2 - \frac{15A^3}{1024}x^3 + \dots$$

or e.g. (direct expansion)

$$6(4+Ax)^{-\frac{1}{2}} = 6\left(4^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}(Ax) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2}4^{-\frac{5}{2}}(Ax)^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}{3!}4^{-\frac{7}{2}}(Ax)^3 + \dots\right)$$
$$= 6\left(\frac{1}{2} - \frac{1}{16}(Ax) + \frac{3}{256}(Ax)^2 - \frac{5}{2048}(Ax)^3 + \dots\right) = 3 - \frac{3A}{8}x + \frac{9A^2}{128}x^2 - \frac{15A^3}{1024}x^3 + \dots$$

Questio Numbe	n Scheme	Marks	
4(i)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 70\pi$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} \Longrightarrow 70\pi = 4\pi \times 5^2 \times \frac{\mathrm{d}r}{\mathrm{d}t}$		
	or e.g. $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}V} \Longrightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = 70\pi \times \frac{1}{4\pi \times 5^2}$	M1	
	$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right) = 0.7 (\mathrm{cm} \mathrm{s}^{-1}) \text{ oe e.g. } \frac{7}{10}$	A1	
		(4)	
	Alternative:	D1	
	$V = 70\pi t$	BI	
	$\frac{4}{3}\pi r^3 = 70\pi t$	B1	
	$\frac{4}{3}\pi r^{3} = 70\pi t \Longrightarrow 4\pi r^{2} \frac{\mathrm{d}r}{\mathrm{d}t} = 70\pi \Longrightarrow 100 \frac{\mathrm{d}r}{\mathrm{d}t} = 70$		
	$\frac{4}{3}\pi r^{3} = 70\pi t \Longrightarrow r^{3} = \frac{105}{2}t \Longrightarrow r = \left(\frac{105}{2}t\right)^{\frac{1}{3}}$	M1	
	$\left(\frac{4}{3}\pi r^3 = 70\pi t \Longrightarrow \frac{500}{3}t = 70 \Longrightarrow t = \frac{50}{21}\right)$		
	$\Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{3} \left(\frac{105}{2}\right)^{\frac{1}{3}} t^{-\frac{2}{3}} = \frac{1}{3} \left(\frac{105}{2}\right)^{\frac{1}{3}} \left(\frac{50}{21}\right)^{-\frac{2}{3}}$		
	$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right) = 0.7 (\mathrm{cm}\mathrm{s}^{-1}) \text{ oe e.g. } \frac{7}{10}$	A1	
Notes:			
B1: States or uses $\frac{dV}{dt} = 70\pi$ or e.g. $\frac{dt}{dV} = \frac{1}{70\pi}$			
B1:	States or uses $\frac{dV}{dr} = 4\pi r^2$ or e.g. $\frac{dr}{dV} = \frac{1}{4\pi r^2}$ which may be seen as $\frac{dV}{dr} = 100\pi$	or $\frac{\mathrm{d}r}{\mathrm{d}V} = \frac{1}{100\pi}$	
i	f $r = 5$ has been substituted.		
M1:	Attempts to use $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ or equivalent with $r = 5$ and their $\frac{dV}{dr}$ and $\frac{dV}{dt}$ c	orrectly placed	
	e.g. $70\pi = 4\pi \times 5^2 \times \frac{\mathrm{d}r}{\mathrm{d}t}$ or e.g. $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}V} = \frac{70\pi}{4\pi(5)^2}$		
A1:	$\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right) = 0.7$ oe (Units are not required but if any are given they must be correct)		

(i) Alt	ernative:	2025 01 MS		
B1:	States or uses $V = 70\pi t$ –			
B1:	States or uses $\frac{4}{3}\pi r^3 = 70\pi t$			
M1:	For either:			
•	Differentiating $\frac{4}{3}\pi r^3 = 70\pi t$ to obtain $r^2 \frac{dr}{dt} =$ and substituting $r = 5$ or			
•	Making <i>r</i> the subject from $\frac{4}{3}\pi r^3 = 70\pi t$ to obtain $r =t^{\frac{1}{3}}$ and then differentiating	g to obtain		
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \dots t^{-\frac{2}{3}}$ and then substituting t obtained from $\frac{4}{3}\pi(5)^3 = 70\pi t$			
A1:	$\frac{dr}{dt} = 0.7$ oe (Units are not required but if any are given they must be correct)			
(ii)	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{k}{h^3} \Longrightarrow \int h^3 \mathrm{d}h = \int k \mathrm{d}t \Longrightarrow \frac{1}{4}h^4 = kt + c$	M1A1		
	$t = 0, \ h = 4 \Longrightarrow \frac{1}{4} \times 4^4 = 0 + c \Longrightarrow c = 64$	M1		
	$t = 5, \ h = 6 \Longrightarrow \frac{1}{4} \times 6^4 = k \times 5 + 64 \Longrightarrow k = (52)$	dM1		
	$h = 10 \Longrightarrow \frac{1}{4} (10)^4 = 52T + 64 \Longrightarrow T = \dots$	dddM1		
	46.8 (hours) or exact e.g. $\frac{609}{13}, \frac{9744}{208}$	A1		
		(6)		
Notes	•	(10 marks)		
M1:	Separates variables and integrates both sides to obtain $h^4 = kt(+c)$ or equivale	nt.		
	There is no need for a constant of integration for this mark.			
A1:	$\frac{1}{4}h^4 = kt(+c)$ or equivalent, with or without a constant of integration.			
M1:	Requires a constant of integration and using $t = 0$, $h = 4$ to find their c.			
	Condone poor integration and poor attempts to rearrange their equation for this r	nark.		
dM1:	Uses $t = 5$, $h = 6$ to find k.			
	It is dependent upon the previous mark and having two correctly placed constan	ts.		
dddM	Condone poor integration and poor attempts to rearrange their equation for this mark.			
uuuiii	It is for substituting $h = 10$ into their equation and finding T (or t)			
A1:	Awrt 46.8 or exact e.g. $\frac{609}{13}, \frac{9744}{208}$.			
	It does not have to be referenced as " T " so just look for the correct value.			
	Units are not required but if any are given they must be correct.			
	See next pages for alternatives to (ii)			

Alternative using definite integration:

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{k}{h^3} \Longrightarrow \int h^3 \,\mathrm{d}h = \int k \,\mathrm{d}t \Longrightarrow \left[\frac{1}{4}h^4\right]_4^6 = \left[kt\right]_0^5$$
$$324 - 64 = 5k \Longrightarrow k = 52$$
$$\left[\frac{1}{4}h^4\right]_4^{10} = \left[52t\right]_0^T \Longrightarrow 2436 = 52T \Longrightarrow T = 46.8$$

Score as follows:

- M1: Separates variables and integrates both sides to obtain $...h^4 = kt(+c)$ or equivalent. There is no need for a constant of integration for this mark.
- A1: $\frac{1}{4}h^4 = kt(+c)$ or equivalent, with or without a constant of integration.
- M1: Attempts $\left[\frac{1}{4}h^4\right]_4^6 = \frac{1}{4} \times 6^4 \frac{1}{4} \times 4^4 = 260$ Condone poor integration of h^3 .

dM1: Attempts
$$\left[kt\right]_{0}^{5} = 5k$$
 and solves $\left[\frac{1}{4}h^{4}\right]_{4}^{6} = \left[kt\right]_{0}^{5}$ to find k

It is dependent upon the **previous** mark.

Condone poor integration and poor attempts to rearrange their equation for this mark. **dddM1:** Dependent upon <u>all three previous</u> M's.

It is for attempting
$$\left[\frac{1}{4}h^4\right]_4^{10} = \left[52t\right]_0^T$$
 to find T (or t)
Awrt 46.8 or exact e.g. $\frac{609}{2}$, $\frac{9744}{2}$.

A1: Awrt 46.8 or exact e.g $\frac{602}{13}$, $\frac{5771}{208}$. It does not have to be referenced as "*T*" so just look for the correct value.

Units are not required but if any are given they must be correct.

Alternative when k is placed differently:

$$\frac{dh}{dt} = \frac{k}{h^3} \Rightarrow \int \frac{h^3}{k} dh = \int dt \Rightarrow \frac{h^4}{4k} = t + c$$

$$t = 0, \ h = 4 \Rightarrow \frac{64}{k} = c \quad \text{or} \quad t = 5, \ h = 6 \Rightarrow \frac{324}{k} = 5 + c$$

$$\frac{64}{k} = c, \ \frac{324}{k} = 5 + c \Rightarrow c = \frac{16}{13}, \ k = 52$$

$$\frac{h^4}{208} = t + \frac{16}{13} \Rightarrow \frac{10^4}{208} = t + \frac{16}{13} \Rightarrow T = \frac{609}{13}$$

Score as follows:

- M1: Separates variables and integrates both sides to obtain $\dots \frac{h^4}{k} = t(+c)$ or equivalent. There is no need for a constant of integration for this mark.
- A1: $\frac{h^4}{4k} = t(+c)$ or equivalent, with or without a constant of integration.
- M1: Requires a constant of integration and using either t = 0, h = 4 or t = 5, h = 6 to obtain an equation connecting *c* and *k*. Condone poor integration for this mark.
- **dM1:** Uses **both** t = 0, h = 4 **and** t = 5, h = 6 to obtain 2 equations connecting *c* and *k* and solves simultaneously to obtain a value for *c* and a value for *k*. You do not need to be concerned how they solve their equations as long as they obtain a value for *c* and a value for *k*.

It is dependent upon the **previous** mark and having two correctly placed constants. Condone poor integration for this mark.

dddM1: Dependent upon <u>all three previous</u> M's.

It is for substituting h = 10 into their equation and finding T (or t)

A1: Awrt 46.8 or exact e.g
$$\frac{609}{13}$$
, $\frac{9744}{208}$

It does not have to be referenced as "T" so just look for the correct value. Units are not required but if any are given they must be correct.

Question Number	Scheme	Marks			
5(i)	$\int x^{2} e^{4x} dx = \frac{1}{4} x^{2} e^{4x} - \int \frac{1}{2} x e^{4x} dx$	M1 A1			
	$=\frac{1}{4}x^{2}e^{4x}-\frac{1}{8}xe^{4x}+\int\frac{1}{8}e^{4x}dx$	dM1			
	$=\frac{1}{4}x^{2}e^{4x}-\frac{1}{8}xe^{4x}+\frac{1}{32}e^{4x}+c$	A1			
		(4)			
Notes: (i) M1: A	ttempts to integrate by parts once the correct way around. The minus must be pr	resent (not +)			
L	book for $ax^2 e^{-x} - bx e^{-x} dx$, $a, b > 0$. Condone the omission of the "dx".				
A1: $\frac{1}{2}$	$x^{2}e^{4x} - \int \frac{1}{2}x e^{4x} dx \text{ oe e.g. } \frac{1}{4}x^{2}e^{4x} - \int \frac{2}{4}x e^{4x} dx$				
dM1: I	dM1: Integrates $\int x e^{4x} dx$ by parts the correct way around again. The second sign can be + or –				
Т	This may be seen in isolation so award for $\dots \int x e^{4x} dx = \dots x e^{4x} - \dots \int e^{4x} dx$				
C	ondone the omission of the " dx ".				
A1: $\frac{1}{2}$	$x^{2}e^{4x} - \frac{1}{8}xe^{4x} + \frac{1}{32}e^{4x}(+c)$ with or without a constant of integration.				
А	llow equivalent simplified expressions e.g. $e^{4x}\left(\frac{1}{4}x^2 - \frac{1}{8}x + \frac{1}{32}\right)(+c)$ and app	oly isw once a			
c	prrect simplified answer is seen.				
	Watch for "D and 1" method:				
	In these cases score M1dM1 for obtaining	5:			
$x^{2} = e^{4x} = px^{2}e^{4x} \pm qxe^{4x} \pm re^{4x}, p,q,r > 0$					
2x	and then A1 for the correct first 2 terms $\frac{1}{4}x^2$	$e^{4x} - \frac{1}{2}xe^{4x}$			
2	$\begin{array}{c c} & 4 & 4 \\ \hline & \frac{1}{16}e^{4x} \\ \hline & \frac{1}{64}e^{4x} \end{array}$ and then A1 as in the main scheme. Note that for this approach M1A1dM0 is not p	ð possible.			

(ii)
$$\frac{2x+11}{(2x+1)(2-x)} = \frac{A}{(2x+1)} + \frac{B}{(2-x)} \Rightarrow A = ..., B = ...$$
 M1

$$= \frac{4}{(2x+1)} + \frac{3}{(2-x)}$$
 A1

$$\int \frac{2x+11}{(2x+1)(2-x)} dx = 2\ln|2x+1| - 3\ln|2-x|$$
 dM1 A1ft

$$\int_{-\frac{1}{4}}^{2} \frac{2x+11}{(2x+1)(2-x)} dx = (2\ln|5-3\ln5) - (2\ln9-3\ln2)$$
 ddM1

$$= \ln\frac{8}{45}$$
 A1
(6)
(10 marks)
Notes:
(ii)
M1: Attempts partial fractions. Condone slips but should be of the correct form $\frac{A}{(2x+1)} + \frac{B}{(2-x)}$
A1: Correct fractions $\frac{4}{(2x+1)} + \frac{3}{(2-x)}$ seen.
It is not for correct 'A'' and "B'' unless the correct fractions are seen or implied by later work.
dM1: Integrates to a correct from e.g. ...ln|2x+1|+...ln|2-x|.
Moduli are not required, brackets will suffice but condone missing brackets for this mark e.g.

$$\int \frac{2x+11}{(2x+1)(2-x)} dx = 2\ln 2x+1 - 3\ln 2 - x$$
A1ft: Correct integration but follow through on their A and B.
Moduli are not required, brackets will suffice but must be present now or implied by subsequent work e.g. when they substitute limits. Allow unsimplified e.g. $\frac{4}{2}\ln(2x+1) - 3\ln(2-x)$
ddM1: Applies the limits 4 and 7 to a function of the correct form $c.g.$...ln $|2x+1|+...\ln|2-x|$ or ...ln $(2x+1)+...\ln(2-x)$ and subtracts the right way round. Brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone missing brackets around the $2x + 1$ and $2-x$ must be present or implied but condone mis

In (ii) condone slips in copying their PF's if the work is otherwise correct e.g. P4 2025 01 MS

$$\begin{split} \hat{u} & \frac{3\chi + u}{(3\chi + i)(2-\chi)} = \frac{A}{3\chi + i} + \frac{B}{3-\chi} \\ & \chi + u = A(3-\chi) + B(3\chi + i) \\ \chi = \chi = 3 \quad 15 = 5B = 3B = 3 \\ \chi = -\frac{1}{2} = 3 \quad 10 = \frac{5}{8}A = 3A = 4 \\ & \frac{2\chi + u}{(2\chi + i)(2-\chi)} = \frac{4}{3\chi - 1} + \frac{3}{3-\chi} \\ & \int_{4}^{7} \frac{2\chi + u}{(3\chi + i)(2-\chi)} d\chi = \int_{4}^{7} \frac{4}{3\chi - 1} + \frac{3}{3-\chi} d\chi \\ & = \left[2\ln(3\chi - 1) - 3\ln(2-\chi)\right]_{4}^{7} \\ & = \left[2\ln(3\chi - 3\ln(-5)) - \left[2\ln(3\chi - 3\ln(-2))\right]_{4}^{7} \\ & = 2\ln(3\chi - 3\ln(-5)) - \left[2\ln(3\chi - 3\ln(-2))\right] \\ & = 3\ln(\frac{13}{7}) + 3\ln(\frac{2}{5}) \\ & = \ln\left(\frac{1352}{6125}\right) \\ & k = \frac{1352}{6125} \end{split}$$

Would score M1A0M1A0M1A0 in part (ii) If in doubt use review.

Quest Num	tion ber	Scheme	Marks	
6		Assumption:	B1	
		e.g. (Assume) " $n^2 - 4n + 5$ is even and <i>n</i> is even"		
		Sets e.g. $n = 2k$ and attempts $(2k)^2 - 4(2k) + 5$	M1	
		$4k^2 - 8k + 5$ (oe for their <i>n</i>)	A1	
		Completes proof with:		
		(1) Statement "which is odd"		
		(11) Reason odd E.g. $4(k^2 - 2k) + 5$		
		or e.g. $4(k^2-2k+1)+1$		
		or e.g. $2(2k^2 - 4k + 2) + 1$	A1*	
		or e.g. $(2k-2)^2 + 1$		
		Condone $4k^2 - 8k + 5 = even - even + odd = odd$		
		(iii) A (minimal) conclusion e.g.		
		"Hence contradiction", "so proven", "the statement is true" etc.		
Notes:			(4 marks)	
		Note that B0M1A1A1 is not possible.		
If the same variable is used e.g. $n = 2n$ allow all but the final mark for otherwise correct work. But allow $n = 2N$ as a different variable.				
B1:	Sets	up a suitable assumption. Must be in words.		
	Look	Look for e.g. $n^2 - 4n + 5$ is even and <i>n</i> is even or e.g. if <i>n</i> even then $n^2 - 4n + 5$ is even.		
	The word "assume" is not required but there must be a statement referring to $n^2 - 4n + 5$ is			
	even	and <i>n</i> is even.		
M1·	Uses	algebra with $n = 2k$ or equivalent e.g. $n = 2k + 2$ or e.g. $n = 4k$ and attempts n	$^{2}-4n+5$	
A1.	$4k^2$ -	$-8k+5$ or equivalent for their <i>n</i> such as $4(k^2-2k)+5$ or e.g. k^2+1 for $n=2$	-m+5	
A1*·	Com	$\frac{1}{1000} = \frac{1}{1000} = 1$		
•	a cor	rect expression that is clearly odd		
•	an ac	ceptable statement with reason		
•	minii	nal conclusion.		
		Note that attempts that consider a contradiction such as a σ		
		(Assume) " $n^2 - 4n + 5$ is odd and <i>n</i> is odd"		
		score no marks.		
	There will be valid approaches to the proof. See below for some alternatives:			

" $n^2 - 4n + 5$ is even and *n* is even" $n^2 - 4n + 5 = (n-2)^2 + 1$ is even so $(n-2)^2$ must be odd If $(n-2)^2$ is odd then $(2k-2)^2$ is odd (as *n* is even) hence contradiction So if $n^2 - 4n + 5$ is even then *n* is odd

$$"n^{2} - 4n + 5 \text{ is even and } n \text{ is even"}$$

$$n^{2} - 4n + 5 = (n-2)^{2} + 1 = 2k \Longrightarrow (n-2)^{2} = 2k - 1 \text{ so } (n-2)^{2} \text{ must be odd}$$
If $(n-2)^{2}$ is odd then $(2a-2)^{2}$ is odd (as *n* is even) hence contradiction
So if $n^{2} - 4n + 5$ is even then *n* is odd

Mark such attempts as follows:

B1: As main scheme

M1: Completes the square on $n^2 - 4n + 5$ to obtain $(n-2)^2 + ...$ or uses $n^2 - 4n + 5 = n(n-4) + ...$ A1: $n^2 - 4n + 5 = (n-2)^2 + 1$ or e.g. $n^2 - 4n + 5 = n(n-4) + 5$

A1: Fully reasoned and convincing argument with a (minimal) conclusion

(Note that we will condone the use without proof that if then p is even then p^2 is even or if p is odd then p^2 is odd) Not vice versa!

See additional document for some further examples with suggested marking approaches.

If you are unsure if a particular response deserves merit then use review.

	P4_2	025_01_MS	
Questio	n Scheme	Marks	
7	$x = 4\sin\theta \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\cos\theta$	B1	
	$\int \frac{1}{(16-x^2)^{\frac{3}{2}}} \mathrm{d}x = \int \frac{4\cos\theta}{(16-16\sin^2\theta)^{\frac{3}{2}}} \mathrm{d}\theta = \int \frac{4\cos\theta}{64\cos^3\theta} \mathrm{d}\theta$	M1 A1	
	$=\frac{1}{16}\tan\theta$	dM1	
	Uses limits of $\frac{\pi}{6}$ and $\frac{\pi}{3}$ or 30° and 60° within their attempted integration and subtracts the right way round e.g. $f\left(\frac{\pi}{3}\right) - f\left(\frac{\pi}{6}\right)$ or $f(60^\circ) - f(30^\circ)$	M1	
	$=\frac{1}{16}\tan\frac{\pi}{3} - \frac{1}{16}\tan\frac{\pi}{6} = \frac{\sqrt{3}}{24}$	A1	
		(6 marks)	
Notes:			
B1:	States or uses $\frac{dx}{d\theta} = 4\cos\theta$ o.e. e.g. $dx = 4\cos\theta d\theta$. This may be seen within the integrand.		
M1:	Simplifies $(16-x^2)^{\frac{3}{2}}$ using the given substitution to $k\cos^3\theta$ using the Pythagore	ean identity	
	This may be implied if the work is correct and they proceed correctly to e.g. $\frac{1}{16}$	$\cos^{-2}\theta \mathrm{d} heta$	
A1:	$\int \frac{1}{\left(16 - x^2\right)^{\frac{3}{2}}} \mathrm{d}x = \int \frac{4\cos\theta}{64\cos^3\theta} \mathrm{d}\theta \text{or exact equivalent e.g. } \frac{1}{16} \int \cos^{-2}\theta \mathrm{d}\theta \text{ or }$	$\int \frac{1}{\left(4\cos\theta\right)^2} \mathrm{d}\theta$	
	or e.g. $\int \frac{4\cos\theta}{(4\cos\theta)(4\cos\theta)} \mathrm{d}\theta$		
	Condone if the "d θ " is missing but is otherwise correct.		
dM1:	For $\int k \frac{\cos\theta}{\cos^3\theta} d\theta = \dots \tan\theta$		
M1:	Uses limits of $\frac{\pi}{6}(30^\circ)$ and $\frac{\pi}{3}(60^\circ)$ correctly with their attempted integration.		
	Condone poor integration here.		
A1:	$\frac{\sqrt{3}}{24}$ or exact equivalent e.g. $\frac{1}{8\sqrt{3}}$		

Question Number	Scheme P4	_2025_ Marks is		
8(a)	States or implies that $a = -3$ or $b = 10$	B1		
	States or implies that $a = -3$ and $b = 10$	B1		
		(2)		
(b)	Attempts = $\begin{pmatrix} "10"\\ 3\\ 1 \end{pmatrix} - \begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix} = \dots$ either way around	M1		
	$\overrightarrow{AB} = \begin{pmatrix} 12\\6\\-3 \end{pmatrix} \text{ or } 12\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A1		
		(2)		
(c)	Attempts $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 7 \\ -2 \end{pmatrix} - \begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \\ -6 \end{pmatrix}$	M1		
	Attempts $\overrightarrow{AC}.\overrightarrow{AB} = \begin{pmatrix} 6\\10\\-6 \end{pmatrix} \cdot \begin{pmatrix} 12\\6\\-3 \end{pmatrix} = 72 + 60 + 18$	dM1		
	Attempts $\overrightarrow{AC}.\overrightarrow{AB} = AC AB \cos\theta \Rightarrow 150 = \sqrt{172} \times \sqrt{189}\cos\theta \Rightarrow \theta =$ $\left(NB \sqrt{172} = 2\sqrt{43}, \sqrt{189} = 3\sqrt{21}\right)$	ddM1		
	$\theta = \text{awrt } 33.7^{\circ}$	A1		
		(4)		
(d)	Attempts a correct method of finding one position for <i>D</i> . See notes for possible approaches	M1		
	(22, 9, -2) or $(-26, -15, 10)$	A1		
	Attempts a correct method of finding both positions for <i>D</i> . See notes for possible approaches.	dM1		
	(22, 9, -2) and $(-26, -15, 10)$	A1		
		(4)		
NT 4		(12 marks)		
inotes: (a)				
B1: St	ates or implies that $a = -3$ or $b = 10$ (Note that a comes from $\lambda = -1$ and b	from $\lambda = 2$)		
B1: St	B1: States or implies that $a = -3$ and $b = 10$ (Note that <i>a</i> comes from $\lambda = -1$ and <i>b</i> from $\lambda = 2$)			
In the re	st of the question, you can condone slips in writing down vectors as long as the	e intention is clear.		
(b)				
M1: A1	M1: Attempts to subtract their vectors \overrightarrow{OA} and \overrightarrow{OB} either way round.			
	It no method is shown, it can be implied by at least 2 correct components for their vectors. A1: Correct vector using correct notation			
(12i)				
Do not	allow as coordinates and do not allow $\begin{bmatrix} 6j \\ -3k \end{bmatrix}$ but apply isw once a correct	<u>vector</u> is seen.		
(c)				

Attempts to subtract \overrightarrow{OC} and their vector \overrightarrow{OA} either way around **M1**: P4 2025 01 MS **dM1:** Attempts to find the scalar product of $\pm \overrightarrow{AC}$ and their vector $\pm \overrightarrow{AB}$ This may be implied by their value so you may need to check. If the value is incorrect and no method is shown score M0 **ddM1:** Full attempt to find angle *CAB* using the scalar product of $\pm \overrightarrow{AC}$ and their vector $\pm \overrightarrow{AB}$ θ = awrt 33.7° (Degrees symbol **not** required) A1: Note that in (a) they can use any multiples of $\pm \overline{AC}$ and $\pm \overline{AB}$ to find the required angle. (d) **M1**: Attempts a complete and correct method for finding one position for *D*. (May be implied by at least 2 correct or correct ft components) Starting from $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$: $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ + 5 $\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ - 7 $\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ Starting from $A\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix}$: $\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix} + 6\begin{pmatrix} 4\\ 2\\ -1 \end{pmatrix}$ or $\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix} - 6\begin{pmatrix} 4\\ 2\\ -1 \end{pmatrix}$ Starting from $B\begin{pmatrix} "10"\\ 3\\ 1 \end{pmatrix}$: $\begin{pmatrix} "10"\\ 3\\ 1 \end{pmatrix} + 3\begin{pmatrix} 4\\ 2\\ 1 \end{pmatrix}$ or $\begin{pmatrix} "10"\\ 3\\ 1 \end{pmatrix} - 9\begin{pmatrix} 4\\ 2\\ 1 \end{pmatrix}$ Note that some candidates may use their \overrightarrow{AB} rather than the direction vector e.g. Starting from $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$: $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ + $\frac{5}{3}\overline{AB}$ or $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ - $\frac{7}{3}\overline{AB}$ Starting from $A\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix}$: $\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix} + 2\overline{AB}$ or $\begin{pmatrix} -2\\ "-3"\\ 4 \end{pmatrix} - 2\overline{AB}$ Starting from $B \begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$: $\begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix} + \overrightarrow{AB} \quad \text{or} \quad \begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix} - 3\overrightarrow{AB}$ One correct point (22, 9, -2) or (-26, -15, 10)A1: Condone if given as a vector e.g. 22i+9j-2k or -26i-15j+10k**dM1:** Attempts a complete and correct method for finding both possible positions for *D*. (May be implied by at least 2 correct or correct ft components) **Examples:** Starting from $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$: $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ + 5 $\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ - 7 $\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$

Starting from
$$A \begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$$
: $\begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$ + $6\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$ - $6\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ P4_2025_01_MS
Starting from $B \begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$: $\begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$ + $3\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$ - $9\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$
Note that some candidates may use their \overline{AB} rather than the direction vector e.g.
Starting from $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$: $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$: $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ + $\frac{5}{3}\overline{AB}$ and $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ - $\frac{7}{3}\overline{AB}$
Starting from $A \begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$: $\begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$ + $2\overline{AB}$ and $\begin{pmatrix} -2 \\ "-3" \\ 4 \end{pmatrix}$ - $2\overline{AB}$
Starting from $B \begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$: $\begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$ + \overline{AB} and $\begin{pmatrix} "10" \\ 3 \\ 1 \end{pmatrix}$ - $3\overline{AB}$
A1: Gives both possible coordinates (-26, -15, 10) and (22, 9, -2)
Condone if given as vectors e.g. 22i + 9j - 2k and -26i - 15j + 10k

Configuration in (d):

$$(2, -1, 3)$$

Note that there may be more convoluted methods in (d) e.g.

Area
$$CAD = 2 \times \text{Area } CAB \Rightarrow AD = 2\sqrt{12^2 + 6^2 + 3^2} \Rightarrow AD^2 = 4 \times 189$$

$$\overrightarrow{AD} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 4\\2\\-1 \end{pmatrix} - \begin{pmatrix} -2\\-3\\4 \end{pmatrix} = \begin{pmatrix} 4\lambda + 4\\2\lambda + 2\\-\lambda - 1 \end{pmatrix}$$

$$(4\lambda + 4)^2 + (2\lambda + 2)^2 + (-\lambda - 1)^2 = 756$$

$$\Rightarrow 21\lambda^2 + 42\lambda - 735 = 0 \Rightarrow \lambda = 5, -7$$

$$\overrightarrow{OD} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + 5 \begin{pmatrix} 4\\2\\-1 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\-1\\3 \end{pmatrix} - 7 \begin{pmatrix} 4\\2\\-1 \end{pmatrix}$$

$$\Rightarrow (-26, -15, 10) \text{ and } (22, 9, -2)$$

In such cases, marks can be awarded as above for:

- M1: A complete and correct method to find one position for *D* (May be implied by at least 2 correct or correct ft components)
- A1: One correct position for D
- dM1: A complete and correct method to find both positions for *D* (May be implied by at least 2 correct or correct ft components)
- A1: As main scheme

If you are in any doubt whether a method is sound or not use review.

Can also be done via the area e.g.

Area
$$CAB = \frac{1}{2}AB \times AC \sin \theta = \frac{1}{2}\sqrt{189}\sqrt{172} \sin \theta$$

 $\cos \theta = \frac{25}{\sqrt{43}\sqrt{21}} \Rightarrow \sin \theta = \sqrt{\frac{278}{903}}$
Area $CAD = \frac{1}{2}AD \times AC \sin \theta = \sqrt{189}\sqrt{172}\sqrt{\frac{278}{903}}$
 $\overrightarrow{AD} = \begin{pmatrix} 4\lambda + 4\\ 2\lambda + 2\\ -\lambda - 1 \end{pmatrix} \therefore \frac{1}{2}\sqrt{(4\lambda + 4)^2 + (2\lambda + 2)^2 + (-\lambda - 1)^2}\sqrt{172}\sqrt{\frac{278}{903}} = \sqrt{189}\sqrt{172}\sqrt{\frac{278}{903}}$
 $\Rightarrow (4\lambda + 4)^2 + (2\lambda + 2)^2 + (-\lambda - 1)^2 = 756$
 $\Rightarrow 21\lambda^2 + 42\lambda - 735 = 0 \Rightarrow \lambda = 5, -7$
 $\overrightarrow{OD} = \begin{pmatrix} 2\\ -1\\ 3 \end{pmatrix} + 5\begin{pmatrix} 4\\ 2\\ -1 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\ -1\\ 3 \end{pmatrix} - 7\begin{pmatrix} 4\\ 2\\ -1 \end{pmatrix}$
 $\Rightarrow (-26, -15, 10) \text{ and } (22, 9, -2)$

The same marking principles apply

- M1: A complete and correct method to find one position for *D* (May be implied by at least 2 correct or correct ft components)
- A1: One correct position for D
- M1: A complete and correct method to find both positions for *D* (May be implied by at least 2 correct or correct ft components)
- A1: As main scheme

For this method it is unlikely that candidates will work in exact terms and will revert to decimals. This is acceptable but is unlikely to result in correct exact coordinates but the method marks are available as long as the method is complete and correct.

Question	Scheme	Marks	
Number	1 /		
9(a)(l)	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3\sin^2 t \cos t}{-4\sin 2t}$	M1A1	
	$\frac{3\sin^2 t\cos t}{-4\sin 2t} = \frac{3\sin^2 t\cos t}{-8\sin t\cos t} = -\frac{3}{8}\sin t$		
	3	Al	
	$\frac{3\sin^2 t \cos t}{-4\sin 2t} = \frac{\frac{3}{2}\sin 2t \sin t}{-4\sin 2t} = -\frac{3}{8}\sin t$		
(ii)	$t = \frac{\pi}{6} \implies x = 1, y = \frac{1}{8}$	B1	
	$m = -\frac{3}{8}\sin\left(\frac{\pi}{6}\right) = -\frac{3}{16} \implies y - \frac{1}{8} = -\frac{3}{16}(x - 1)$	M1	
	3x + 16y - 5 = 0 *	A1*	
		(6)	
(b)	$3(2\cos 2t) + 16(\sin^3 t) - 5 = 0$	M1	
	$6(1-2\sin^2 t) + 16\sin^3 t - 5 = 0$	dM1	
	$16\sin^3 t - 12\sin^2 t + 1 = 0$	A1	
	$(2\sin t - 1)^2 (4\sin t + 1) = 0 \Rightarrow \sin t = -\frac{1}{4}$	ddM1	
	$\sin t = -\frac{1}{4} \Longrightarrow x = 2\cos 2t = \dots \text{ and } y = \sin^3 t = \dots$	dddM1	
	$Q\left(\frac{7}{4},-\frac{1}{64}\right)$	A1	
		(6)	
		(12 marks)	
Notes:			
(a)(i)	Note that (a)(i) is now being marked as M1A1A1 not M1dM1A1		
M1: A	M1: Attempts to use the rule $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$. Condone incorrect attempts on $\frac{dy}{dt}$ and $\frac{dx}{dt}$		
N	ote that x and/or y may have been adapted before differentiation.		
A1: C	prrect $\frac{dy}{dx}$ in any form from correct work.		
A1: A	A1: Achieves $\frac{dy}{dx} = -\frac{3}{8}\sin t$ from fully correct work so must follow M1A1 so M1A0A1 is not		
p	ossible.		
You	You may need to check the working carefully as some candidates are fudging the answer as they can deduce the value of k from the given tangent equation.		
e.g. $3x + 16y - 5 = 0 \implies m = -\frac{3}{16}, \ m = k \sin \frac{\pi}{6} \implies k = -\frac{3}{8}$			

P4_2025_01_MS (a)(ii)Correct coordinates for P = 1, $y = \frac{1}{9}$ **B1**: Correct method for tangent. It is awarded for: **M1**: • substituting $x = \frac{\pi}{6}$ into their $k \sin t$ or their $\frac{dy}{dx}$ to find m • using $y - y = m(x - x_1)$ where x_1 and y_1 are their values of x and y when $x = \frac{\pi}{6}$ or using y = mx + c with their values of x and y when $x = \frac{\pi}{6}$ and proceeds to $c = \dots$ A1*: cso. Proceeds with a correct method and correct work to the given answer. Note that this cso so that if $-\frac{3}{8}\sin t$ has been obtained fortuitously or by fudging in part (i), this mark should be withheld. (b) Substitutes $x = 2\cos 2t$ and $y = \sin^3 t$ into 3x + 16y - 5 = 0**M1**: Condone slips as long as the intention is clear. **dM1:** Uses $\cos 2t = \pm 1 \pm 2\sin^2 t$ or equivalent work to obtain a cubic equation in $\sin t$. The equivalent work could be e.g. $6\cos 2t = 6(\cos^2 t - \sin^2 t) = 6(1 - \sin^2 t - \sin^2 t)$ etc. Correct cubic equation with terms collected and all on one side e.g. $16\sin^3 t - 12\sin^2 t + 1 = 0$ A1: The "= 0" may be implied by later work e.g. by their attempt to solve. **ddM1:** Solves cubic equation via any appropriate means including via a calculator to obtain $\sin t = \alpha$ where $|\alpha| < 1$ and $\alpha \neq \frac{1}{2}$ **dddM1:** Substitutes their $\sin t = -\frac{1}{4}$ into both $x = 2\cos 2t$ and $y = \sin^3 t$ to obtain a value for x and y This may be using identities for finding x or via a calculator e.g. $x = 2\cos\left(2\sin^{-1}\left(-\frac{1}{4}\right)\right)$ A1: $Q\left(\frac{7}{4}, -\frac{1}{64}\right)$ Allow any equivalent exact values and allow as x = ..., y = ...

Note that it is possible to answer (b) by eliminating *t*:

<u>1. Via x:</u>

$$x = 2\cos 2t = 2(1 - 2\sin^2 t) \Rightarrow \sin^2 t = \frac{2 - x}{4} \Rightarrow y = \sin^3 t = \left(\frac{2 - x}{4}\right)^{\frac{3}{2}}$$

$$3x + 16\left(\frac{2 - x}{4}\right)^{\frac{3}{2}} - 5 = 0 \Rightarrow 16\left(\frac{2 - x}{4}\right)^{\frac{3}{2}} = 5 - 3x \Rightarrow 4(2 - x)^3 = (5 - 3x)^2$$

$$\Rightarrow 4x^3 - 15x^2 + 18x - 7 = 0$$

$$\Rightarrow x = \frac{7}{4} \Rightarrow y = -\frac{1}{64}$$

Score as:

- M1: Uses the x coordinate and $\cos 2t = \pm 1 \pm 2\sin^2 t$ or equivalent work to find an equation connecting $\sin t$ and x e.g. $\sin^2 t = \frac{2-x}{4}$ and uses this to find y in terms of x.
- **dM1:** Substitutes their y in terms of x into 3x+16y-5=0 to obtain an equation in terms of x only.
- A1: Correct cubic equation with terms collected and all on one side e.g. $4x^3 15x^2 + 18x 7 = 0$ The "= 0" may be implied by later work e.g. by their attempt to solve.
- **ddM1:** Solves cubic equation via any appropriate means including via a calculator to obtain a value for x where $x \neq 1$
- **dddM1:** Uses their value of *x* to find a value of *y*.

A1:
$$Q\left(\frac{7}{4}, -\frac{1}{64}\right)$$
 Allow any equivalent exact values and allow as $x = ..., y = ...$

<u>2. Via y:</u>

$$y = \sin^{3} t \Rightarrow \sin t = y^{\frac{1}{3}}, x = 2(1 - 2\sin^{2} t) = 2 - 4y^{\frac{2}{3}}$$
$$3\left(2 - 4y^{\frac{2}{3}}\right) + 16y - 5 = 0 \Rightarrow 12y^{\frac{2}{3}} = 16y + 1 \Rightarrow 1728y^{2} = (16y + 1)^{3}$$
$$\Rightarrow 4096y^{3} - 960y^{2} + 48y + 1 = 0$$
$$\Rightarrow y = -\frac{1}{64} \Rightarrow x = \frac{7}{4}$$

Score as:

- M1: Uses the y coordinate to find an equation connecting $\sin t$ and y e.g. $\sin t = y^{\frac{1}{3}}$ and uses this to find x in terms of y.
- **dM1:** Substitutes their x in terms of y into 3x+16y-5=0 to obtain an equation in terms of y only.
- A1: Correct cubic equation with terms collected and all on one side e.g. $4096x^3 960x^2 + 48x + 1 = 0$ The "= 0" may be implied by later work e.g. by their attempt to solve.
- ddM1: Solves cubic equation via any appropriate means including via a calculator to obtain a value for y

where
$$y \neq \frac{1}{8}$$

dddM1: Uses their value of *y* in to find a value of *x*.

A1:
$$Q\left(\frac{7}{4}, -\frac{1}{64}\right)$$
 Allow any equivalent exact values and allow as $x = ..., y = ...$