Question Number	Scheme	Marks
1 (a)	$\frac{5x+10}{(1-x)(2+3x)} \equiv \frac{A}{1-x} + \frac{B}{2+3x} \Longrightarrow \text{ Value for } A \text{ or } B$	M1
	One correct value, either $A = 3$ or $B = 4$	A1
	Correct PF form $\frac{3}{1-x} + \frac{4}{2+3x}$	A1
	$\frac{1-x}{2+5x}$	(3)
(b)(i)	$\frac{A}{1-x} = A(1-x)^{-1} = A(1+x+x^2+)$	B1
	$\left\{\frac{B}{2}\right\} \left(1 + \frac{3x}{2}\right)^{-1} = \left\{\frac{B}{2}\right\} \left(1 + (-1)\frac{3x}{2} + \frac{(-1)(-2)}{2}\left(\frac{3x}{2}\right)^2 + \dots\right); = \frac{B}{2} \left(1 - \frac{3x}{2} + \frac{9x^2}{4} + \dots\right)$	M1; A1
	f (x) = $3 \times \left(1 + x + x^2 +\right) + \frac{4}{2} \left(1 - \frac{3x}{2} + \frac{9x^2}{4} +\right)$	M1
	$=5+\frac{15}{2}x^{2}+$	A1
		(5)
(b)(ii)	$\left x\right < \frac{2}{3}$	B1
		(1)
(b)(i)	$(-)^{-1}$ 2	(9 marks)
Alt 1	$(1-x) = 1 + x + x^2 + \dots$	B1
	$\left\{\frac{1}{2}\right\} \left(1 + \frac{3x}{2}\right)^{-1} = \left\{\frac{1}{2}\right\} \left(1 + (-1)\frac{3x}{2} + \frac{(-1)(-2)}{2}\left(\frac{3x}{2}\right)^2 + \dots\right); = \frac{1}{2}\left(1 - \frac{3x}{2} + \frac{9}{4}x^2 + \dots\right)$	M1; A1
	$\frac{5x+10}{(1-x)(2+3x)} = (5x+10)\left(1+x+x^2+\dots\right) \times \frac{1}{2}\left(1-\frac{3x}{2}+\frac{9x^2}{4}+\dots\right) = 5+\dots x+\dots x^2$	M1
	$=5+\frac{15}{2}x^{2}+$	A1
		(5)
(b)(i) Alt 2	$\frac{5x+10}{(1-x)(2+3x)} = (5x+10)\left(2+\left(x-3x^2\right)\right)^2 = \frac{1}{2}(5x+10)\left(1+\frac{1}{2}\left(x-3x^2\right)\right)^{-1}$	B1
	$(1+p(x))^{-1} = \left(1\pm p(x) + \frac{(-1)(-2)}{2}(p(x))^2 + \dots\right); \frac{1}{2}\left(1 - \frac{1}{2}(x-3x^2) + \frac{1}{4}(x-3x^2)^2 + \dots\right)$	M1; A1
	$(10+5x)\left(\frac{1}{2}-\frac{1}{4}x+\frac{3}{4}x^2+\frac{1}{8}x^2+\ldots\right)=5-\frac{5}{2}x+\frac{35}{4}x^2+\frac{5}{2}x-\frac{5}{4}x^2+\ldots$	M1

Page 1 of 20

$=5+\frac{15}{2}x^2+$ A1		
	(5)	
Notes:		
a) M1: Attempts at correct PF. Correct form identified (may be implicit) and achieves a value for at least one of the constants. A1: One correct value or term. A1: Correct PE form $\frac{3}{4} + \frac{4}{4}$ This may be awarded if seen in (b) but the correct final form		
(not just values) must be seen somewhere in the question. Accept at $3(1-x)^{-1} + 4(2+3x)^{-1}$		
(b)(i)		
B1: $\frac{A}{1-x} = A(1-x)^{-1} = A(1+x+x^2+)$ which may be unsimplified. Allow with their A or		
with $A = 1$.		
M1: Attempts to expand $\frac{1}{2+3x} = (2+3x)^{-1}$ binomially either by taking out the factor 2 first,		
or directly. Look for $(1+kx)^{-1} = \dots \left(1 \pm kx + \frac{(-1)(-2)}{2}(kx)^2 + \dots\right)$ where $k \neq 1$ following an		
attempt at taking out a factor 2, or $\frac{1}{2+3x} = (2+3x)^{-1} = (2^{-1} \pm 2^{-2}kx + \frac{(-1)(-2)}{2}2^{-3}(kx)^2 +)$ by		
direct expansion. Allow missing brackets on kx^2 in either case.		
A1: $\frac{B}{2+3x} = \frac{B}{2} \left(1 + \frac{3x}{2} \right)^{-1} = \frac{B}{2} \left(1 - \frac{3x}{2} + \frac{9}{4}x^2 + \right)$ oe with their <i>B</i> from (a) or with $B = 1$		
M1: Uses their coefficients and attempts to add both series.		
A1cao: $5 + \frac{15}{2}x^2 +$ Condone additional higher order terms. Terms may be either order.		
(b)(ii) $D_1 = \frac{1}{2}$ (b) $D_2 = \frac{1}{2}$ (c) $D_2 = \frac{1}{2}$ (c) $D_2 = \frac{1}{2}$ (c) $D_2 = \frac{1}{2}$		
B1: $ x < \frac{1}{3}$ or exact equivalent. This must be clearly identified as the answer. B0 if both range	5	
are given with no choice of which is correct. (But B1 if formal set notation with \cap used.) (b)(i) Alt 1:		
B1: $(1-x)^{-1} = 1 + x + x^2 + \dots$ which may be unsimplified.		
M1: Same as main scheme. A1: Correct expansion (see main scheme, $B = 1$ allowed). M1: Attempts to expand all three brackets, achieving the correct constant term at least.		
A1cso: $5 + \frac{15}{2}x^2 +$ Condone additional higher order terms. Terms may be either order.		
(b)(i) Alt 2		
B1: Writes $f(x)$ as $(5x+10)\left(2+\left(x-3x^2\right)\right)^2$ or with the 2 extracted, with the $\left(x-3x^2\right)$ clear.		

Page 2 of 20

M1: Attempts the binomial expansion on $(1+p(x))^{-1}$ or $(2+p(x))^{-1}$ for p(x) of form $ax+bx^2$. Same conditions as for main scheme. A1: Correct expansion. For direct expansion $(\frac{1}{2} - \frac{1}{4}(x-3x^2) + \frac{1}{8}(x-3x^2)^2 + ...)$ M1: Expands the brackets achieving at least the correct constant term. A1cao: $5 + \frac{15}{2}x^2 + ...$ Condone additional higher order terms. Terms may be either order.

Question Number	Scheme	Marks
2 (a)	E.g. $x = \frac{t-1}{2t+1} \Longrightarrow t = \frac{x+1}{1-2x}$ or $y = \frac{6}{2t+1} \Longrightarrow t = \frac{6-y}{2y}$	M1
	E.g. $y = \frac{6}{2t+1} \Rightarrow y = \frac{6}{2 \times \left(\frac{x+1}{1-2x}\right)+1}$ or $t = \frac{6-y}{2y} \Rightarrow x = \frac{\frac{6-y}{2y}-1}{2 \times \frac{6-y}{2y}+1}$	A1
	E.g. $y = \frac{6}{2 \times \left(\frac{x+1}{1-2x}\right)+1} \Rightarrow y = \frac{6(1-2x)}{2 \times (x+1)+1(1-2x)} = ax+b$	dM1
	E.g. $y = \frac{6(1-2x)}{3}, y = 2(1-2x)$ oe so linear *	A1*
		(4)
(b)	$y = 2(1-2x)$ and $y = x+12 \Rightarrow 2(1-2x) = x+12 \Rightarrow x =$	M1
	x = -2	Alcao
Alt (b)		(2)
An (b)	$\frac{6}{2t+1} = \frac{t-1}{2t+1} + 12 \Longrightarrow t = \left(-\frac{1}{5}\right)$	M1
	$x = \frac{-\frac{1}{5} - 1}{2 \times -\frac{1}{5} + 1} = -2$	A1
		(2)
		(6 marks)

Notes:

(a) Do not recover marks for part (a) from part (b) if there is an attempt at part (a). If there is no labelling mark as a whole.

M1: For an attempt to get t in terms of x or y or x and y $\frac{x}{y} = \frac{t-1}{6} \Rightarrow t = \frac{6x+y}{y}$ or full

method to eliminate t from the equations.

A1: Forms a correct equation linking x and y only. Other forms are possible using t in terms of x and y in either equation for x or y etc.

dM1: Depends on first M. Attempts to simplify the fraction reaching a linear form in x and y. Allow if there are slips but an unsimplified equation of form ax + by = c must be achieved. A1: Achieves y = 2(1-2x) o.e. (and isw after a correct linear equation) and states linear or

hence on line etc. There must be a reference to linearity in some form (similarly for the Alts). (b)

M1: Solves their " $_{y=2(1-2x)}$ " (may not be linear) with y = x + 12, E.g. $2(1-2x) = x + 12 \Rightarrow x = ...$

10 A1: cao x = -2 (ignore any references to the *y* coordinate). Do not accept –

5

Alt (b)

M1: Solves the parametric equations simultaneously with the line equation to find a value for tA1: cao Deduces correct value for *x*.

2 (a) Alt 1	$\frac{dx}{dt} = \frac{(2t+1)-2(t-1)}{(2t+1)^2} \text{ and } \frac{dy}{dt} = \frac{-12}{(2t+1)^2} \text{ o.e.}$	M1 A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	dM1	
	$\frac{dy}{dx} = \frac{-12}{(2t+1)^2} \div \frac{3}{(2t+1)^2} = -4 $ (which is a constant,) hence linear	A1*	(4)
Alt 1 (a) v	ia differentiation Notes:		
M1: Atten	npts $\frac{dx}{dt}$ and $\frac{dy}{dt}$ using appropriate rule for at least one.		
A1: Both	correct		
dM1: Dep	ends on first M. Attempts $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ leading to constant.		
A1: Achie	eves $\frac{dy}{dx} = -4$ and makes suitable conclusion e.g. "hence linear" *		
2 (a) Alt 2	$x = \frac{t-1}{2t+1} \Longrightarrow x = A - \frac{B}{2t+1}; \ x = \frac{1}{2} - \frac{3}{2(2t+1)}$	M1; A1	
	$x = \frac{1}{2} - \frac{3}{2\left(\frac{6}{y}\right)}$	dM1	
	$x = \frac{1}{2} - \frac{1}{4}y$ hence linear *	A1*	(4)
Alt 2 (a) v	ia division Notes:		
M1: Atten	npts to write x in terms of just 2t+1. E.g $x = \frac{t-1}{2t+1} \Rightarrow x = A - \frac{B}{2t+1}$.		
A1: $x = \frac{1}{2}$	$\frac{1}{2} - \frac{3}{2(2t+1)}$		
dM1: Uses $y = \frac{6}{2t+1}$ to form an equation linking x and y			
A1: $x = \frac{1}{2}$	$-\frac{1}{4}y$ and states linear*		
2 (a) Alt 3	$ax + by = \frac{at - a + 6b}{2t + 1} = \frac{k(2t + 1)}{2t + 1} \Longrightarrow a = 2k, 6b - a = k$	M1	
	$a = 12b - 2a \Longrightarrow a = 4b$	A1	
	E.g. $4x + y = \frac{2(2t+1)}{2t+1} = \dots$	dM1	
	4x + y = 2 (oe) hence linear *	A1*	(4)

Alt 3 (a) via elimination Notes: M1: Writes ax + by = ... as a single fraction and attempts to compare coefficients of numerator with the denominator. A1: Correct ratio between *a* and *b* deduced. dM1: Uses their ratio to eliminate *t* from the equation. A1: 4x + y = 2 (oe) and states linear* Note: It is possible to spot the correct values for *a* and *b* directly so the following would gain $f(t) = 1 - 2 + \frac{1}{2t - 2 + 3} - \frac{2t + 1}{2t + 1} + 1 = 1$

full marks: $2x + \frac{1}{2}y = \frac{2t - 2 + 3}{2t + 1} = \frac{2t + 1}{2t + 1} = 1$ hence linear. *

Question Number	Scheme	Marks
3.	States or implies Volume = $\int_{\sqrt{5}}^{5} \pi \left(\sqrt{\frac{3x}{3x^2 + 5}} \right)^2 dx$	B1
	$\int \left(\sqrt{\frac{3x}{3x^2+5}}\right)^2 dx = \int \frac{3x}{(3x^2+5)} dx = \frac{1}{2}\ln(3x^2+5)$	M1A1
	Volume = $\left\{\pi\right\} \left(\frac{1}{2}\ln(3 \times 25 + 5) - \frac{1}{2}\ln(3 \times 5 + 5)\right)$	M1
	$=\pi \ln 2$	A1
		(5 marks)
Notes:	Volume = $\left\{\pi\right\} \left(\frac{1}{2}\ln(3 \times 25 + 5) - \frac{1}{2}\ln(3 \times 5 + 5)\right)$ = $\pi \ln 2$	M1 A1 (5 marks)

B1: States or implies Volume = $\int_{\sqrt{5}}^{5} \pi \left(\sqrt{\frac{3x}{3x^2 + 5}} \right)^2 dx$ o.e. The limits may be implied by

subsequent work, and the dx may be missing. This is for knowing the correct formula rather than for notation. The π may be implied by later work.

M1: Attempts $\int \left(\sqrt{\frac{3x}{3x^2+5}}\right)^2 dx$ to achieve $k \ln(3x^2+5)$ (oe). May use substitution, either u =

 $3x^2$ or $u = 3x^2 + 5$, in which case they should achieve $k \ln(u+5)$ or $k \ln(u)$ (oe) respectively. Allow if the brackets are missing.

A1: Correct result of integration, which may be left unsimplified. May be in terms of u if a substitution has been used. Allow if missing brackets are recovered, but A0 if never recovered. M1: Having achieved an integral of the form $p(x)\ln(3x^2+5)$ (allowing for missing brackets) where p(x) is constant or a polynomial in x (oe in terms of u for substitution), uses the limits within their integral - substitutes **correct limits for their variable** and subtracts, allowing either way round. The π may be missing for this mark.

A1: $\pi \ln 2$ cao. Note $\frac{\pi}{2} \ln 4$ is A0 as form is not as specified.

Question Number	Scheme	Marks
4 (a)	a = 3, b = 5	B1
	E.g $u = \sqrt{2x+1} \Rightarrow \frac{dx}{du} = u$ or $\frac{du}{dx} = (2x+1)^{-\frac{1}{2}}$ o.e.	B1
	$\int \sqrt{8x+4} e^{\sqrt{2x+1}} dx = \int 2u e^u u du$	M1
	$=\int_3^5 2u^2 e^u du$	A1
		(4)
(b)	$\int \sqrt{8x+4} e^{2x+1} dx = \int 2u^2 e^u du$	
	$= 2u^2 e^u - \int 4u e^u du$	M1
	$= 2u^{2}e^{u} - \left(4ue^{u} - 4e^{u}\right) = 2u^{2}e^{u} - 4ue^{u} + 4e^{u}$	dM1 A1ft
	$\int_{4}^{12} \sqrt{8x+4} e^{\sqrt{2x+1}} dx = \left[2u^2 e^u - 4ue^u + 4e^u \right]_{3}^{5} = \left(50e^5 - 20e^5 + 4e^5 \right) - \left(18e^3 - 12e^3 + 4e^3 \right)$	ddM1
	$=34e^{5}-10e^{3}$	A1
		(5)
Notos:		(9 marks)
(a) B1: For both $a = 3, b = 5$ seen in their solution. Allow if these are recovered in (b).		
B1: For a correct expression involving $\frac{du}{dx}$ or $\frac{dx}{du}$ or du and dx separately. May be unsimplified		
M1: Attem	apts to fully change $\int \sqrt{8x+4} e^{\sqrt{2x+1}} dx$ into an integral with respect to <i>u</i> . Mu	st
include an attempt at replacing dx to get du so M0 if there are no d terms present or dx becomes		
d <i>u</i> without	an attempt at connecting them first (ie there must have been an attempt at $\frac{d}{d}$	$\frac{u}{x}$ oe).
A1: Comp	plete method to show I = $\int_{3}^{5} 2u^2 e^u du$. Must include the correct limits and the	d <i>u</i> .
(b) Note: y	you may see different ways of presenting the application of parts e.g D/I meth	iod.
M1: Use of integration by parts once to obtain $pu^2 e^u - \int qu e^u du$, where $p, q > 0$ (if k is		
positive, otherwise signs will be opposite) and may be in terms of k (as can the dM mark).		
dM1: Completely integrates by parts twice to a form $pu^2 e^u - que^u \pm re^u$ where $p, q > 0$ (if $k > 0$ as before). Note they may evaluate in stages, but look for the complete integration overall.		
A1ft: $\int_{a}^{b} ku^{2} e^{u} du = ku^{2}e^{u} - 2kue^{u} + 2ke^{u}$ (oe) accepted with k or their value for k. May have		
the last two terms bracketed but must be seen as a complete answer in their work.		
ddM1: Substitutes their <i>a</i> and <i>b</i> into a form $pu^2e^u - que^u \pm re^u$ and subtracts (either way), but		

must be using a value for k at this stage. May be done in stages.

A1: $34e^5 - 10e^3$ or exact equivalent in a simplified form such as $2e^3(17e^2 - 5)$

Question Number	Scheme	Marks
5 (a)	$y^{2} = 2x^{2} + 15x + 10y \Longrightarrow 2y \frac{dy}{dx} = 4x + 15 + 10 \frac{dy}{dx}$	M1 A1
	$(2y-10)\frac{\mathrm{d}y}{\mathrm{d}x} = 4x+15 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x+15}{2y-10}$ oe	M1, A1
		(4)
(b)	Deduces that $2\nu - 10 - 0 \rightarrow \nu - 5$	R1ft
(0)	Substitutes $v = 5$ into $v^2 = 2r^2 + 15r + 10v \rightarrow 2r^2 + 15r + 25 = 0$ and	DIII
	solves for x	M1
	$(p=)-5, (q=)-\frac{5}{2}$	A1
		(3)
Notos:		(7 marks)
(a)		
M1: Correct differentiation of one of the y terms, ie $y^2 \rightarrow 2y \frac{dy}{dx}$ or $10y \rightarrow 10 \frac{dy}{dx}$.		
A1: Fully correct differentiation $2y\frac{dy}{dx} = 4x + 15 + 10\frac{dy}{dx}$ o.e.		
M1: Rearranges to make $\frac{dy}{dx}$ the subject. The differentiated expression must contain exactly two $\frac{dy}{dx}$		
terms - one from each y term, not an extra $\frac{dy}{dx} = \dots$		
A1: $\frac{dy}{dx} = \frac{4x + 15}{2y - 10}$ oe		
(b)		
B1ft: Deduces that $2y-10=0 \Rightarrow y=5$. Follow through on a denominator of form $ay + b$, $a, b \neq 0$. This deduction may arise from use of the symmetry of a hyperbola.		
E.g. $x = 0 \Rightarrow y^2 - 10y = 0 \Rightarrow y = 0,10$ so p,q when $y = 5$		
M1: Substitutes their $y = 5$ into $y^2 = 2x^2 + 15x + 10y (\Rightarrow 2x^2 + 15x + 25 = 0)$ and solves for x		
(usual rules, if no working shown (by calculator) they must give correct values for their quadratic).		
A1: $(p =)-5, (q =)-\frac{5}{2}$ Correct values, do not be concerned about the labels and accept if they		
give as the end points of the interval (ie accept if they give $\left(-5, -\frac{5}{2}\right)$ as their answer).		

Page 10 of 20

(b) Alt method 1 $y^2 = 2x^2 + 15x + 10y \Rightarrow y^2 - 10y - (2x^2 + 15x) = 0$ B1: Deduces that roots for x don't exist when $100 + 4 \times (2x^2 + 15x) < 0$ M1: Solves their $2x^2 + 15x + 25 < 0$ A1: $(p =) -5, (q =) -\frac{5}{2}$ Correct values, see note on main scheme. (b) Alt method 2 B1: $y = 0 \Rightarrow 2x^2 + 15x = 0 \Rightarrow x = 0, -\frac{15}{2}$ Correct values found for x when y = 0M1: Full method to use symmetry to deduce the required values of x. E.g. by symmetry, values required are one third and two thirds way between these $\Rightarrow x = \frac{1}{3} \times -\frac{15}{2}, \frac{2}{3} \times -\frac{15}{2}$ A1: $(p =) -5, (q =) -\frac{5}{2}$ Correct values, see note on main scheme.

Question Number	Scheme	Marks
6 (a)(i)	$\overrightarrow{AB} = \left(\pm\right) \left[\left(8\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} \right) - \left(2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} \right) \right] = \dots$	M1
	$\overrightarrow{AB} = 6\mathbf{i} + 6\mathbf{j} - 12\mathbf{k}$	A1
(ii)	$\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \text{ o.e. such as } \mathbf{r} = \begin{pmatrix} 8 \\ 3 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ 6 \\ -12 \end{pmatrix}$	B1ft
		(3)
(b)	Attempts $\pm \overrightarrow{CP} = \pm \begin{pmatrix} 2+\lambda-3\\ -3+\lambda-5\\ 5-2\lambda-2 \end{pmatrix}$	M1
	$\overrightarrow{CP} \bullet k \begin{pmatrix} 1\\1\\-2 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} \lambda - 1\\\lambda - 8\\-2\lambda + 3 \end{pmatrix} \bullet k \begin{pmatrix} 1\\1\\-2 \end{pmatrix} = 0 \Rightarrow 1(\lambda - 1) + 1(\lambda - 8) - 2(-2\lambda + 3) = 0$	dM1
	Alt: $(\lambda - 1)^2 + (\lambda - 8)^2 + (-2\lambda + 3)^2 = 6\lambda^2 - 30\lambda + 74 = 6\left(\lambda - \frac{5}{2}\right)^2 + \frac{73}{2}$	
	$\Rightarrow \lambda = \frac{5}{2} \qquad \left[\text{use of } \overrightarrow{AB} \text{ in } \overrightarrow{CP} \text{ gives } \lambda = \frac{5}{12}, \text{use of } \overrightarrow{OB} \lambda = \frac{-7}{2} \text{ or } \frac{-7}{12} \right]$	A1
	$\overrightarrow{OP} = \begin{pmatrix} 2\\ -3\\ 5 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 1\\ 1\\ -2 \end{pmatrix} = \frac{9}{2}\mathbf{i} - \frac{1}{2}\mathbf{j}$	ddM1, A1
		(5)
Notes:		(o marks)

Accept either form of vector notation throughout. Accept with \mathbf{i}, \mathbf{j} and \mathbf{k} in their column vectors. (a)(i)

M1: Attempts to subtract vectors \overrightarrow{OA} and \overrightarrow{OB} either way around. May be implied by two correct components.

A1: $\overrightarrow{AB} = 6\mathbf{i} + 6\mathbf{j} - 12\mathbf{k}$ o.e.

(a)(ii)

B1ft: Any correct equation for the line, may use a correct or follow through multiple of *AB* for direction and with any point on the line. Must start $\mathbf{r} = \dots$ or accept $x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \dots$ $(l = \dots$ is B0). (b)

M1: Attempts $\pm \overrightarrow{CP}$ using point *C* and a general point on their *l*

dM1: Sets the scalar product of their \overrightarrow{CP} (either direction) and their direction of l (or \overrightarrow{AB}) to 0 and proceeds to an equation in λ . Condone sign slips in components if the intention is clear.

Alternatively attempts to minimise the distance *CP* (by completing square as shown, or by differentiation) to obtain a linear equation in λ .

A1: Finds a correct value of λ for their *l*. Note if they use \overrightarrow{AB} the correct value is $\frac{5}{12}$ ddM1: Substitutes their λ (from a correct method) into their *l* A1: $\overrightarrow{OP} = \frac{9}{2}\mathbf{i} - \frac{1}{2}\mathbf{j}$ Accept as coordinates, and accept $P = \dots$ instead of \overrightarrow{OP} .

Question Number	Scheme	Marks	
7 (a)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1 (1)	
(b) (i)	$\frac{dV}{dt} = \frac{900}{(2t+3)^2} \Longrightarrow V = -\frac{450}{2t+3} + c \text{ (oe)}$	M1 A1	
	$t = 0, V = 0 \Longrightarrow 0 = -\frac{450}{3} + c \Longrightarrow c = \dots$	M1	
	$V = 150 - \frac{450}{2t+3} = \frac{300t + 450 - 450}{2t+3} = \frac{300t}{2t+3} $ *	A1 *	
(ii)	150 cm ³	B1	
	200 2	(5)	
(c)	$t = 3 \Longrightarrow V = \frac{300 \times 3}{2 \times 3 + 3} = (100)$	M1	
	$100 = \frac{4}{3}\pi r^3 \Longrightarrow r = 2.88 \text{ cm}$	dM1 A1cao (3)	
(d)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} \Longrightarrow \frac{900}{\left(2t+3\right)^2} = 4\pi r^2 \times \frac{\mathrm{d}r}{\mathrm{d}t}$	M1	
	$t = 3, r = "2.88" \implies \frac{900}{81} = 4\pi \times 2.88^2 \times \frac{dr}{dt} \implies \frac{dr}{dt} = \dots$	dM1	
	$\Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = \mathrm{awrt}0.11\mathrm{cm}\mathrm{s}^{-1}$	A1 (3)	
		(12 marks)	
Notes: Ma	rk the question as a whole. Penalise only once for missing/incorrect units in	n the question.	
(a) B1: cao See scheme. (b)(i)			
M1: Integr	ates to a form $V = \frac{k}{2t+3}$ (oe) with or without + c. Condone a sign error in 2	2t - 3.	
A1: $V =$	$\frac{450}{2t+3}(+c)$ (oe). There is no need for $+c$		
M1: Substitutes $V = 0, t = 0$ and proceeds to find a value for c. There must have been an			
attempt at integrating to achieve a function in V and t with a constant of integration. A1*: Correct integration and value for c with at least one intermediate step with c substituted back in the equation before proceeding to the given answer.			
B1: 150 cm ³ . Must include units.			
(c)			
M1: Attempts to substitute $t = 3$ into the equation for V. Allow if there is a slip in substitution.			
dM1: Uses	dM1: Uses their V in $V = \frac{4}{3}\pi r^3$ to find a value for r		

A1: cao r = 2.88 cm. Must be to 3 s.f.. Must include units unless already penalised in (b)(ii). (d)

M1: Attempts to use $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ (oe) with the given formula for $\frac{dV}{dt}$ and an attempt at substituting their $\frac{dV}{dr}$ (allow if this substitution is not in the correct place if a correct chain rule has been stated.)

dM1: Substitutes both t = 3 and their value for r and proceeds to find a value for $\frac{dr}{dt}$. If no

substitution shown, the answer must be correct for their *r* to imply the method (may need to check). A1: awrt 0.11 cm s⁻¹. Must include units unless already penalised in (b)(ii) or (c).

Question Number	Scheme	Marks	
8 (a)	At $t = \frac{\pi}{4}$ $P = \left(\frac{1}{2}, 2\right)$	B1	
	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\sec^2 t}{2\sin t\cos t} = 4 \text{ when } t = \frac{\pi}{4}$	M1 A1	
	Equation of <i>l</i> : $y-2 = -\frac{1}{4} \left(x - \frac{1}{2} \right) \Longrightarrow 8y - 16 = -2x + 1 \Longrightarrow 8y + 2x = 17*$	dM1 A1 * cso	
		(5)	
(b)	$\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \int 2 \tan t \times 2 \sin t \cos t \mathrm{d}t$	M1	
	$= \int 4\sin^2 t \mathrm{d}t$	A1	
	$= \int 2 - 2\cos 2t \mathrm{d}t = 2t - \sin 2t$	dM1 A1	
	Total area of $S = \left[2t - \sin 2t\right]_{0}^{\frac{\pi}{4}} + \frac{1}{2} \times 8 \times 2 = \frac{\pi}{2} - 1 + 8 = \frac{\pi}{2} + 7$	M1 A1	
		(6)	
Notes:		(11 marks)	
(a) B1: Correct coordinates for <i>P</i> stated or implied by working. M1: Attempts to find $\frac{dy}{dx}$ using $\frac{dy}{dt}{dt}$ at $t = \frac{\pi}{4}$. Condone poor differentiation. Substitution of			
the $\frac{\pi}{4}$ is s	the $\frac{\pi}{4}$ is sufficient for the method. Alternatively, may attempt $\frac{dx}{dy}$ or $-\frac{dx}{dy}$. Accept a value		
following	finding $\frac{dy}{dt}$ (or its reciprocal etc) as an attempt to evaluate at $t = \frac{\pi}{4}$ if no co	ontrary	
working is	shown but check carefully as the correct answer may arise from incorrect	t working.	
A1: Correc	A1: Correct $\frac{dy}{dx} = 4$ (oe equation) following correct differentiation. May be implied.		
dM1: Attempts to find the equation of the normal at $t = \frac{\pi}{4}$. It is dependent upon the previous			
M and use of their <i>P</i> . The value of the gradient used must be correct for their differential. A1*: cso Correct proof leading to $8y + 2x = 17$			
M1: Attempts $\int y \frac{dx}{dt} dt = \int 2 \tan t \times 2 \sin t \cos t dt$ with their $\frac{dx}{dt}$ condoning slips on coefficients.			
A1: $\int 4s$	$\sin^2 t \mathrm{d}t$		

Page 16 of 20

dM1: Uses $\cos 2t = \pm 1 \pm 2 \sin^2 t$ and integrates $\int \pm p \pm q \cos 2t \, dt$ to a form $\pm at \pm b \sin 2t$ See note below. A1: $\int y \frac{dx}{dt} \, dt = 2t - \sin 2t$ See note below. M1: Full method to find area of region *S*. Finds the sum of their values for $\int_0^{\frac{\pi}{4}} y \frac{dx}{dt} \, dt$ and $\frac{1}{2} \left(\frac{17}{2} - P_x\right) \times P_y$. Condone poor integration for this mark as long as they are attempting to apply the correct limits to their result. They may attempt the area under the line by integration: $\int_{P_x}^{\frac{17}{2}} -\frac{1}{4}x + \frac{17}{8} \, dx$ In such a method condone minor slips, but must be attempting correct limits. A1: $\frac{\pi}{2} + 7$

Note: If the *t*'s becomes *x*'s during the integration, then allow the M's and the A's if recovered but if $2x - \sin 2x$ or with mixed variables is found and *x* values substituted then it is M1A0 for the integral and M0 for the method for area.

8 (a) Alt	At $t = \frac{\pi}{4}$ $P = \left(\frac{1}{2}, 2\right)$	B1
	$y = \frac{2\sin t}{\cos t} = \frac{2\sqrt{x}}{\sqrt{1-x}} \ y^2 = \frac{4x}{1-x}$	
	$\frac{dy}{dx} = \frac{x^{-\frac{1}{2}} (1-x)^{\frac{1}{2}} - 2\sqrt{x} \times -\frac{1}{2} (1-x)^{-\frac{1}{2}}}{1-x} \Rightarrow \frac{dy}{dx}\Big _{x=\frac{1}{2}} = 4 \text{ or}$	M1 A1
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4(1-x)-4x\times-1}{\left(1-x\right)^2} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=\frac{1}{2},y=2} = 4 \text{ oe}$	
	Equation of <i>l</i> :	dM1 A1 *
	$y-2 = -\frac{1}{4}\left(x-\frac{1}{2}\right) \Longrightarrow 8y-16 = -2x+1 \Longrightarrow 8y+2x = 17*$	CSO
		(5)
(a)		•
B1: Correct coordinate for $P\left(\frac{1}{2}, 2\right)$ stated or implied by working.		
M1: Attempts to find Cartesian equation for C, any form, and attempts $\frac{dy}{dx}$ (or an equivalent as		

main scheme) with appropriate differentiation methods for their Cartesian form, allowing for slips and finds x and/or y using $t = \frac{\pi}{4}$ and evaluate the derivative with these values. A1: Correct $\frac{dy}{dx} = 4$ (oe equation) following correct differentiation and from correct work. dM1: Attempts to find the equation of the normal at their x and y values. It is dependent upon the previous M and use of their P. A1*: **cso** Correct proof leading to 8y + 2x = 17

Question Number	Scheme	Marks
9 (a)	Let $p = 3k + 2$ then $(3k + 2)^3 = 27k^3 + 54k^2 + 36k + 8$	M1
	= $3 \times \left(9k^{3} + 18k^{2} + 12k + 3\right) - 1$ not a multiple of 3	A1
	So <i>p</i> cannot be of form $3k + 1$ or $3k + 2$, since p^3 is a multiple of 3. Hence <i>p</i> must be a multiple of 3, a contradiction of our assumption, hence for all	A1
	integers p , when p' is a multiple of 3, then p is a multiple of 3	
		(3)
(b)	Assumption: there exist (integers) p and q such that $\sqrt[3]{3} = \frac{p}{q}$	B1
	(where p and q have no (non-trivial) common factors.)	
	Then $\sqrt[3]{3} = \frac{p}{q} \Rightarrow p^3 = 3q^3$	M1
	So p^3 is a multiple of 3 and (so) p is a multiple of 3	A1
	But $p = 3k \Rightarrow 27k^3 = 3q^3 \Rightarrow q^3 = 9k^3$	dM1
	Hence q^3 is a multiple of 3 so q is a multiple of 3, but as p and q have no (non-trivial) common factors, this is a contradiction. Hence $\sqrt[3]{3}$ is an irrational number.*	A1*
		(5)
		(8 marks)
Notes:		

(a)

M1: Attempts to expand $(3k+2)^3$ or $(3k-1)^3$.

Look for a cubic expression with **4 terms** with at least **two correct** (allowing for incorrect signs).

A1: Achieves a correct $3 \times (...) + r$, |r| < 10 form for the expansion and states not a multiple of 3.

Suitable forms include
$$(3k+2)^3 = 3(9k^3+18k^2+12k+2) + 2 = 3(9k^3+18k^2+12k+3) - 1$$
 or

$$3\left(9k^{3}+18k^{2}+12k\right)+8 \text{ or } (3k-1)^{3}=3\left(9k^{3}-9k^{2}+3k\right)-1 \text{ etc.}$$

Alternatively, achieves correct $(3k+2)^3 = 27k^3 + 54k^2 + 36k + 8$ or $(3k-1)^3 = 27k^3 - 27k^2 + 9k - 1$

with a **reason** why it is not a multiple of 3 e.g 3 divides 27, 54 and 36, but not 8 hence not divisible by 3.

A1: Completes the proof. Must have scored both previous marks and a reference to **both cases** (in some form) leading to a "**contradiction**" and some indication that **proof is complete**. It is unlikely to be as complete as that shown in the scheme, but all three bold points must be conveyed. E.g. as a minimum after satisfying the first A "both cases give a contradiction hence the original statement is true".

(b)

May use different letters throughout.

B1: Sets up algebraically the initial statement to be contradicted. Essentially for showing they know what a rational number is algebraically. There is no requirement for this mark to state that p and q are integers with no (non-trivial) common factors (this may be implied for this mark). M1: Cubes correctly and multiplies through by q^3

A1: Deduces that both p^3 is a multiple of 3 and hence p is a multiple of 3. Jumping directly to p is a multiple of 3 is A0.

dM1: Sets p = 3k and proceeds to find q^3 in terms of k. (May use a different letter.)

A1: Completes the proof. This requires

- Correct algebraic statements
- Correct deductions in correct order. E.g. p^3 is a multiple of 3 so p is a multiple of 3
- initial statement must have included that p and q are integers (or accept natural

numbers or a $\frac{p}{q}$ is a fraction) and have no common factors (or are co-prime, or in

simplest form)

- correct reason for contradiction and acceptable conclusion
- There must have been no contrary statements during the proof (e.g. that *p* and *q* are prime)