Question Number	Scheme	Marks
1 (a)	$\frac{5 x+10}{(1-x)(2+3 x)} \equiv \frac{A}{1-x}+\frac{B}{2+3 x} \Rightarrow$ Value for A or B	M1
	One correct value, either $A=3$ or $B=4$	A1
	Correct PF form $\frac{3}{1-x}+\frac{4}{2+3 x}$	A1
		(3)
(b)(i)	$\frac{A}{1-x}=A(1-x)^{-1}=A\left(1+x+x^{2}+\ldots\right)$	B1
	$\left\{\frac{B}{2}\right\}\left(1+\frac{3 x}{2}\right)^{-1}=\left\{\frac{B}{2}\right\}\left(1+(-1) \frac{3 x}{2}+\frac{(-1)(-2)}{2}\left(\frac{3 x}{2}\right)^{2}+\ldots\right) ;=\frac{B}{2}\left(1-\frac{3 x}{2}+\frac{9 x^{2}}{4}+\ldots\right)$	M1; A1
	$\mathrm{f}(x)=3 \times\left(1+x+x^{2}+\ldots\right)+\frac{4}{2}\left(1-\frac{3 x}{2}+\frac{9 x^{2}}{4}+\ldots\right)$	M1
	$=5+\frac{15}{2} x^{2}+\ldots$	A1
		(5)
(b)(ii)	$\|x\|<\frac{2}{3}$	B1
		(1)
		(9 marks)
$\begin{aligned} & \hline \text { (b)(i) } \\ & \text { Alt } 1 \end{aligned}$	$(1-x)^{-1}=1+x+x^{2}+\ldots$	B1
	$\left\{\frac{1}{2}\right\}\left(1+\frac{3 x}{2}\right)^{-1}=\left\{\frac{1}{2}\right\}\left(1+(-1) \frac{3 x}{2}+\frac{(-1)(-2)}{2}\left(\frac{3 x}{2}\right)^{2}+\ldots\right) ;=\frac{1}{2}\left(1-\frac{3 x}{2}+\frac{9}{4} x^{2}+\ldots\right)$	M1; A1
	$\frac{5 x+10}{(1-x)(2+3 x)}=(5 x+10)\left(1+x+x^{2}+\ldots\right) \times \frac{1}{2}\left(1-\frac{3 x}{2}+\frac{9 x^{2}}{4}+\ldots\right)=5+\ldots x+\ldots x^{2}$	M1
	$=5+\frac{15}{2} x^{2}+\ldots$	A1
		(5)
$\begin{aligned} & \text { (b)(i) } \\ & \text { Alt } 2 \end{aligned}$	$\frac{5 x+10}{(1-x)(2+3 x)}=(5 x+10)\left(2+\left(x-3 x^{2}\right)\right)^{-1}=\frac{1}{2}(5 x+10)\left(1+\frac{1}{2}\left(x-3 x^{2}\right)\right)^{-1}$	B1
	$(1+p(x))^{-1}=\left(1 \pm p(x)+\frac{(-1)(-2)}{2}(p(x))^{2}+\ldots\right) ; \frac{1}{2}\left(1-\frac{1}{2}\left(x-3 x^{2}\right)+\frac{1}{4}\left(x-3 x^{2}\right)^{2}+\ldots\right)$	M1; A1
	$(10+5 x)\left(\frac{1}{2}-\frac{1}{4} x+\frac{3}{4} x^{2}+\frac{1}{8} x^{2}+\ldots\right)=5-\frac{5}{2} x+\frac{35}{4} x^{2}+\frac{5}{2} x-\frac{5}{4} x^{2}+\ldots$	M1

	$=5+\frac{15}{2} x^{2}+\ldots$	A1
	(5)	

Notes:

a)

M1: Attempts at correct PF. Correct form identified (may be implicit) and achieves a value for at least one of the constants.
A1: One correct value or term.
A1: Correct PF form $\frac{3}{1-x}+\frac{4}{2+3 x}$. This may be awarded if seen in (b) but the correct final form (not just values) must be seen somewhere in the question. Accept at $3(1-x)^{-1}+4(2+3 x)^{-1}$
(b)(i)

B1: $\frac{A}{1-x}=A(1-x)^{-1}=A\left(1+x+x^{2}+\ldots\right)$ which may be unsimplified. Allow with their A or with $A=1$.
M1: Attempts to expand $\frac{1}{2+3 x}=(2+3 x)^{-1}$ binomially either by taking out the factor 2 first, or directly. Look for $(1+k x)^{-1}=\ldots\left(1 \pm k x+\frac{(-1)(-2)}{2}(k x)^{2}+\ldots\right)$ where $k \neq 1$ following an attempt at taking out a factor 2 , or $\frac{1}{2+3 x}=(2+3 x)^{-1}=\left(2^{-1} \pm 2^{-2} k x+\frac{(-1)(-2)}{2} 2^{-3}(k x)^{2}+\right)$ by direct expansion. Allow missing brackets on $k x^{2}$ in either case.
A1: $\frac{B}{2+3 x}=\frac{B}{2}\left(1+\frac{3 x}{2}\right)^{-1}=\frac{B}{2}\left(1-\frac{3 x}{2}+\frac{9}{4} x^{2}+\right)$ oe with their B from (a) or with $B=1$
M1: Uses their coefficients and attempts to add both series.
A1cao: $5+\frac{15}{2} x^{2}+\ldots$ Condone additional higher order terms. Terms may be either order.
(b)(ii)

B1: $|x|<\frac{2}{3}$ or exact equivalent. This must be clearly identified as the answer. B0 if both ranges are given with no choice of which is correct. (But B1 if formal set notation with \cap used.)
(b)(i) Alt 1:

B1: $(1-x)^{-1}=1+x+x^{2}+\ldots$ which may be unsimplified.
M1: Same as main scheme.
A1: Correct expansion (see main scheme, $B=1$ allowed).
M1: Attempts to expand all three brackets, achieving the correct constant term at least.
A1cso: $5+\frac{15}{2} x^{2}+\ldots$ Condone additional higher order terms. Terms may be either order.
(b)(i) Alt 2

B1: Writes $\mathrm{f}(x)$ as $(5 x+10)\left(2+\left(x-3 x^{2}\right)\right)^{-1}$ or with the 2 extracted, with the $\left(x-3 x^{2}\right)$ clear.

M1: Attempts the binomial expansion on $(1+p(x))^{-1}$ or $(2+p(x))^{-1}$ for $p(x)$ of form $a x+b x^{2}$.
Same conditions as for main scheme.
A1: Correct expansion. For direct expansion $\left(\frac{1}{2}-\frac{1}{4}\left(x-3 x^{2}\right)+\frac{1}{8}\left(x-3 x^{2}\right)^{2}+\ldots\right)$
M1: Expands the brackets achieving at least the correct constant term.
A1cao: $5+\frac{15}{2} x^{2}+\ldots$ Condone additional higher order terms. Terms may be either order.

Question Number	Scheme	Marks
2 (a)	E.g. $x=\frac{t-1}{2 t+1} \Rightarrow t=\frac{x+1}{1-2 x}$ or $y=\frac{6}{2 t+1} \Rightarrow t=\frac{6-y}{2 y}$	M1
	E.g. $y=\frac{6}{2 t+1} \Rightarrow y=\frac{6}{2 \times\left(\frac{x+1}{1-2 x}\right)+1}$ or $t=\frac{6-y}{2 y} \Rightarrow x=\frac{\frac{6-y}{2 y}-1}{2 \times \frac{6-y}{2 y}+1}$	A1
	E.g. $y=\frac{6}{2 \times\left(\frac{x+1}{1-2 x}\right)+1} \Rightarrow y=\frac{6(1-2 x)}{2 \times(x+1)+1(1-2 x)}=a x+b$	dM1
	E.g. $y=\frac{6(1-2 x)}{3}, y=2(1-2 x)$ oe so linear	A1*
		(4)
(b)	$y=2(1-2 x)$ and $y=x+12 \Rightarrow 2(1-2 x)=x+12 \Rightarrow x=\ldots$	M1
	$x=-2$	A1cao
		(2)
Alt (b)	$\frac{6}{2 t+1}=\frac{t-1}{2 t+1}+12 \Rightarrow t=\left(-\frac{1}{5}\right)$	M1
	$x=\frac{-\frac{1}{5}-1}{2 \times-\frac{1}{5}+1}=-2$	A1
		(2)
		(6 marks)
Notes:		
(a) Do not recover marks for part (a) from part (b) if there is an attempt at part (a). If there is no labelling mark as a whole. M1: For an attempt to get t in terms of x or y or x and $y \frac{x}{y}=\frac{t-1}{6} \Rightarrow t=\frac{6 x+y}{y}$ or full method to eliminate t from the equations. A1: Forms a correct equation linking x and y only. Other forms are possible using t in terms of x and y in either equation for x or y etc. dM : Depends on first M. Attempts to simplify the fraction reaching a linear form in x and y. Allow if there are slips but an unsimplified equation of form $a x+b y=c$ must be achieved. A1: Achieves $y=2(1-2 x)$ o.e. (and isw after a correct linear equation) and states linear or hence on line etc. There must be a reference to linearity in some form (similarly for the Alts). (b) M1: Solves their " $y=2(1-2 x)$ " (may not be linear) with $y=x+12$, E.g. $2(1-2 x)=x+12 \Rightarrow x=\ldots$		

A1: cao $x=-2$ (ignore any references to the y coordinate). Do not accept $-\frac{10}{5}$
Alt (b)
M1: Solves the parametric equations simultaneously with the line equation to find a value for t
A1: cao Deduces correct value for x.

2 (a) Alt 1	$\frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{(2 t+1)-2(t-1)}{(2 t+1)^{2}}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{-12}{(2 t+1)^{2}}$ o.e.	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$	dM1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-12}{(2 t+1)^{2}} \div \frac{3}{(2 t+1)^{2}}=-4$ (which is a constant,) hence linear	A1*

Alt 1 (a) via differentiation Notes:
M1: Attempts $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ using appropriate rule for at least one.
A1: Both correct
dM 1 : Depends on first M. Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$ leading to constant.
A1: Achieves $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4$ and makes suitable conclusion e.g. "hence linear" *

$\begin{gathered} 2(a) \\ \text { Alt } 2 \end{gathered}$	$x=\frac{t-1}{2 t+1} \Rightarrow x=A-\frac{B}{2 t+1} ; x=\frac{1}{2}-\frac{3}{2(2 t+1)}$	$\begin{aligned} & \text { M1; } \\ & \text { A1 } \end{aligned}$
	$x=\frac{1}{2}-\frac{3}{2(6 / y)}$	dM1
	$x=\frac{1}{2}-\frac{1}{4} y$ hence linear *	A1* (4)

Alt 2 (a) via division Notes:
M1: Attempts to write x in terms of just $2 t+1$. E.g $x=\frac{t-1}{2 t+1} \Rightarrow x=A-\frac{B}{2 t+1}$.
A1: $x=\frac{1}{2}-\frac{3}{2(2 t+1)}$
dM : Uses $y=\frac{6}{2 t+1}$ to form an equation linking x and y
A1: $x=\frac{1}{2}-\frac{1}{4} y$ and states linear*

$\begin{aligned} & 2(a) \\ & \text { Alt } 3 \end{aligned}$	$a x+b y=\frac{a t-a+6 b}{2 t+1}=\frac{k(2 t+1)}{2 t+1} \Rightarrow a=2 k, 6 b-a=k$	M1
	$a=12 b-2 a \Rightarrow a=4 b$	A1
	E.g. $4 x+y=\frac{2(2 t+1)}{2 t+1}=\ldots$	dM1
	$4 x+y=2$ (oe) hence linear *	A1*

Alt 3 (a) via elimination Notes:

M1: Writes $a x+b y=\ldots$ as a single fraction and attempts to compare coefficients of numerator with the denominator.
A1: Correct ratio between a and b deduced.
dM 1 : Uses their ratio to eliminate t from the equation.
A1: $4 x+y=2$ (oe) and states linear*
Note: It is possible to spot the correct values for a and b directly so the following would gain full marks: $2 x+\frac{1}{2} y=\frac{2 t-2+3}{2 t+1}=\frac{2 t+1}{2 t+1}=1$ hence linear. *

Question Number	Scheme	Marks
3.	States or implies Volume $=\int_{\sqrt{5}}^{5} \pi\left(\sqrt{\frac{3 x}{3 x^{2}+5}}\right)^{2} \mathrm{~d} x$	B1
	$\int\left(\sqrt{\frac{3 x}{3 x^{2}+5}}\right)^{2} \mathrm{~d} x=\int \frac{3 x}{\left(3 x^{2}+5\right)} \mathrm{d} x=\frac{1}{2} \ln \left(3 x^{2}+5\right)$	M1A1
	Volume $=\{\pi\}\left(\frac{1}{2} \ln (3 \times 25+5)-\frac{1}{2} \ln (3 \times 5+5)\right)$	M1
	$=\pi \ln 2$	A1
		(5 marks)
Notes:		
B1: States or implies Volume $=\int_{\sqrt{5}}^{5} \pi\left(\sqrt{\frac{3 x}{3 x^{2}+5}}\right)^{2} \mathrm{~d} x$ o.e. The limits may be implied by subsequent work, and the $\mathrm{d} x$ may be missing. This is for knowing the correct formula rather than for notation. The π may be implied by later work. $3 x^{2}$ or $u=3 x^{2}+5$, in which case they should achieve $k \ln (u+5)$ or $k \ln (u)$ (oe) respectively. Allow if the brackets are missing. A1: Correct result of integration, which may be left unsimplified. May be in terms of u if a substitution has been used. Allow if missing brackets are recovered, but A0 if never recovered. M1: Having achieved an integral of the form $p(x) \ln \left(3 x^{2}+5\right)$ (allowing for missing brackets) where $p(x)$ is constant or a polynomial in x (oe in terms of u for substitution), uses the limits within their integral - substitutes correct limits for their variable and subtracts, allowing either way round. The π may be missing for this mark. A1: $\pi \ln 2$ cao. Note $\frac{\pi}{2} \ln 4$ is A0 as form is not as specified.		

Question Number	Scheme	Marks
4 (a)	$a=3, b=5$	B1
	E.g $u=\sqrt{2 x+1} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=u$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=(2 x+1)^{-\frac{1}{2}}$ o.e.	B1
	$\int \sqrt{8 x+4} \mathrm{e}^{\sqrt{2 x+1}} \mathrm{~d} x=\int 2 u \mathrm{e}^{u} u \mathrm{~d} u$	M1
	$=\int_{3}^{5} 2 u^{2} \mathrm{e}^{u} \mathrm{~d} u$	A1
		(4)
(b)	$\int \sqrt{8 x+4} \mathrm{e}^{2 x+1} \mathrm{~d} x=\int 2 u^{2} \mathrm{e}^{u} \mathrm{~d} u$	
	$=2 u^{2} \mathrm{e}^{u}-\int 4 u \mathrm{e}^{u} \mathrm{~d} u$	M1
	$=2 u^{2} \mathrm{e}^{u}-\left(4 u e^{u}-4 \mathrm{e}^{u}\right)=2 u^{2} \mathrm{e}^{u}-4 u \mathrm{e}^{u}+4 \mathrm{e}^{u}$	dM1 A1ft
	$\int_{4}^{12} \sqrt{8 x+4} \mathrm{e}^{\sqrt{2 x+1}} \mathrm{~d} x=\left[2 u^{2} \mathrm{e}^{u}-4 u \mathrm{e}^{u}+4 \mathrm{e}^{u}\right]_{3}^{5}=\left(50 \mathrm{e}^{5}-20 \mathrm{e}^{5}+4 \mathrm{e}^{5}\right)-\left(18 \mathrm{e}^{3}-12 \mathrm{e}^{3}+4 \mathrm{e}^{3}\right)$	ddM1
	$=34 \mathrm{e}^{5}-10 \mathrm{e}^{3}$	A1
		(5)
		(9 marks)
Notes:		
(a) B1: For both $a=3, b=5$ seen in their solution. Allow if these are recovered in (b). B1: For a correct expression involving $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\mathrm{d} u$ and $\mathrm{d} x$ separately. May be unsimplified M1: Attempts to fully change $\int \sqrt{8 x+4} \mathrm{e}^{\sqrt{2 x+1}} \mathrm{~d} x$ into an integral with respect to u. Must include an attempt at replacing $\mathrm{d} x$ to get $\mathrm{d} u$ so M0 if there are no d terms present or $\mathrm{d} x$ becomes $\mathrm{d} u$ without an attempt at connecting them first (ie there must have been an attempt at $\frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{oe}$). A1: Complete method to show $\mathrm{I}=\int_{3}^{5} 2 u^{2} \mathrm{e}^{u} \mathrm{~d} u$. Must include the correct limits and the $\mathrm{d} u$. (b) Note: you may see different ways of presenting the application of parts e.g D/I method. M1: Use of integration by parts once to obtain $p u^{2} \mathrm{e}^{u}-\int q u \mathrm{e}^{u} \mathrm{~d} u$, where $p, q>0$ (if k is positive, otherwise signs will be opposite) and may be in terms of k (as can the dM mark). dM : Completely integrates by parts twice to a form $p u^{2} \mathrm{e}^{u}-q u \mathrm{e}^{u} \pm r \mathrm{e}^{u}$ where $p, q>0$ (if $k>0$ as before). Note they may evaluate in stages, but look for the complete integration overall. A1ft: $\int_{a}^{b} k u^{2} \mathrm{e}^{u} \mathrm{~d} u=k u^{2} \mathrm{e}^{u}-2 k u \mathrm{e}^{u}+2 k \mathrm{e}^{u}$ (oe) accepted with k or their value for k. May have the last two terms bracketed but must be seen as a complete answer in their work. ddM1: Substitutes their a and b into a form $p u^{2} \mathrm{e}^{u}-q u \mathrm{e}^{u} \pm r \mathrm{e}^{u}$ and subtracts (either way), but must be using a value for k at this stage. May be done in stages.		

A1: $34 \mathrm{e}^{5}-10 \mathrm{e}^{3}$ or exact equivalent in a simplified form such as $2 \mathrm{e}^{3}\left(17 \mathrm{e}^{2}-5\right)$

Page 9 of 20

Notes:

(a)

M1: Correct differentiation of one of the y terms, ie $y^{2} \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $10 y \rightarrow 10 \frac{\mathrm{~d} y}{\mathrm{~d} x}$.
A1: Fully correct differentiation $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 x+15+10 \frac{\mathrm{~d} y}{\mathrm{~d} x}$ o.e.
M1: Rearranges to make $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject. The differentiated expression must contain exactly two $\frac{\mathrm{d} y}{\mathrm{~d} x}$ terms - one from each y term, not an extra $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$.

A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x+15}{2 y-10}$ oe
(b)

B1 ft: Deduces that $2 y-10=0 \Rightarrow y=5$. Follow through on a denominator of form $a y+b, a, b \neq 0$. This deduction may arise from use of the symmetry of a hyperbola.
E.g. $x=0 \Rightarrow y^{2}-10 y=0 \Rightarrow y=0,10$ so p, q when $y=5$

M1: Substitutes their $y=5$ into $y^{2}=2 x^{2}+15 x+10 y\left(\Rightarrow 2 x^{2}+15 x+25=0\right)$ and solves for x (usual rules, if no working shown (by calculator) they must give correct values for their quadratic).
A1: $(p=)-5,(q=)-\frac{5}{2}$ Correct values, do not be concerned about the labels and accept if they give as the end points of the interval (ie accept if they give $\left(-5,-\frac{5}{2}\right)$ as their answer).
(b) Alt method 1
$y^{2}=2 x^{2}+15 x+10 y \Rightarrow y^{2}-10 y-\left(2 x^{2}+15 x\right)=0$
B1: Deduces that roots for x don't exist when $100+4 \times\left(2 x^{2}+15 x\right)<0$
M1: Solves their $2 x^{2}+15 x+25<0$
A1: $(p=)-5,(q=)-\frac{5}{2}$ Correct values, see note on main scheme.
(b) Alt method 2

B1: $y=0 \Rightarrow 2 x^{2}+15 x=0 \Rightarrow x=0,-\frac{15}{2}$ Correct values found for x when $y=0$
M1: Full method to use symmetry to deduce the required values of x. E.g. by symmetry, values required are one third and two thirds way between these $\Rightarrow x=\frac{1}{3} \times-\frac{15}{2}, \frac{2}{3} \times-\frac{15}{2}$
A1: $(p=)-5,(q=)-\frac{5}{2}$ Correct values, see note on main scheme.

Question Number	Scheme	Marks
6 (a)(i)	$\overrightarrow{A B}=(\pm)[(8 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k})-(2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k})]=\ldots$	M1
	$\overrightarrow{A B}=6 \mathbf{i}+\mathbf{6} \mathbf{-}-12 \mathbf{k}$	A1
(ii)	$\mathbf{r}=\left(\begin{array}{r}2 \\ -3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right)$ o.e. such as $\mathbf{r}=\left(\begin{array}{r}8 \\ 3 \\ -7\end{array}\right)+\lambda\left(\begin{array}{r}6 \\ 6 \\ -12\end{array}\right)$	B1ft
		(3)
(b)	Attempts $\pm \overrightarrow{C P}= \pm\left(\begin{array}{c}2+\lambda-3 \\ -3+\lambda-5 \\ 5-2 \lambda-2\end{array}\right)$	M1
	$\begin{aligned} & \overrightarrow{C P} \bullet\left(\begin{array}{c} 1 \\ 1 \\ -2 \end{array}\right)=0 \Rightarrow\left(\begin{array}{c} \lambda-1 \\ \lambda-8 \\ -2 \lambda+3 \end{array}\right) \bullet k\left(\begin{array}{r} 1 \\ 1 \\ -2 \end{array}\right)=0 \Rightarrow 1(\lambda-1)+1(\lambda-8)-2(-2 \lambda+3)=0 \\ & \text { Alt: }(\lambda-1)^{2}+(\lambda-8)^{2}+(-2 \lambda+3)^{2}=6 \lambda^{2}-30 \lambda+74=6\left(\lambda-\frac{5}{2}\right)^{2}+\frac{73}{2} \end{aligned}$	dM1
	$\Rightarrow \lambda=\frac{5}{2} \quad\left[\right.$ use of $\overrightarrow{A B}$ in $\overrightarrow{C P}$ gives $\lambda=\frac{5}{12}$, use of $\overrightarrow{O B} \lambda=\frac{-7}{2}$ or $\left.\frac{-7}{12}\right]$	A1
	$\overrightarrow{O P}=\left(\begin{array}{r}2 \\ -3 \\ 5\end{array}\right)+\frac{5}{2}\left(\begin{array}{r}1 \\ 1 \\ -2\end{array}\right)=\frac{9}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$	ddM1, A1 (5)
		(8 marks)
Notes:		
Accept either form of vector notation throughout. Accept with $\mathbf{i} \mathbf{j} \mathbf{j}$ and \mathbf{k} in their column vectors. (a)(i) M1: Attempts to subtract vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$ either way around. May be implied by two correct components. A1: $\overrightarrow{A B}=6 \mathbf{i}+\mathbf{6} \mathbf{j}-12 \mathbf{k}$ o.e. (a)(ii) B1ft: Any correct equation for the line, may use a correct or follow through multiple of $\overrightarrow{A B}$ for direction and with any point on the line. Must start $\mathbf{r}=\ldots$ or accept $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=\ldots(l=\ldots$ is B0). (b) M1: Attempts $\pm \overrightarrow{C P}$ using point C and a general point on their l dM 1 : Sets the scalar product of their $\overrightarrow{C P}$ (either direction) and their direction of l (or $\overrightarrow{A B}$) to 0 and proceeds to an equation in λ. Condone sign slips in components if the intention is clear. Alternatively attempts to minimise the distance $C P$ (by completing square as shown, or by differentiation) to obtain a linear equation in λ.		

A1: Finds a correct value of λ for their l. Note if they use $\overrightarrow{A B}$ the correct value is $\frac{5}{12}$ ddM1: Substitutes their λ (from a correct method) into their l
A1: $\overrightarrow{O P}=\frac{9}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$ Accept as coordinates, and accept $P=\ldots$ instead of $\overrightarrow{O P}$.

Question Number	Scheme	Marks
7 (a)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$	B1 (1)
(b) (i)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{900}{(2 t+3)^{2}} \Rightarrow V=-\frac{450}{2 t+3}+c(\mathrm{oe})$	M1 A1
	$t=0, V=0 \Rightarrow 0=-\frac{450}{3}+c \Rightarrow c=\ldots$	M1
	$V=150-\frac{450}{2 t+3}=\frac{300 t+450-450}{2 t+3}=\frac{300 t}{2 t+3}$ *	A1 *
(ii)	$150 \mathrm{~cm}^{3}$	B1
		(5)
(c)	$t=3 \Rightarrow V=\frac{300 \times 3}{2 \times 3+3}=(100)$	M1
	$100=\frac{4}{3} \pi r^{3} \Rightarrow r=2.88 \mathrm{~cm}$	dM1 A1cao
(d)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \Rightarrow \frac{900}{(2 t+3)^{2}}=4 \pi r^{2} \times \frac{\mathrm{d} r}{\mathrm{~d} t}$	M1
	$t=3, r=" 2.88 " \Rightarrow \frac{900}{81}=4 \pi \times 2.88^{2} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} r}{\mathrm{~d} t}=\ldots$	dM1
	$\begin{equation*} \Rightarrow \frac{\mathrm{d} r}{\mathrm{~d} t}=\operatorname{awrt} 0.11 \mathrm{~cm} \mathrm{~s}^{-1} \tag{3} \end{equation*}$	A1
		(12 marks)

Notes: Mark the question as a whole. Penalise only once for missing/incorrect units in the question.
(a)

B1: cao See scheme.
(b)(i)

M1: Integrates to a form $V=\frac{k}{2 t+3}$ (oe) with or without $+c$. Condone a sign error in $2 t-3$.
A1: $V=-\frac{450}{2 t+3}(+c)$ (oe). There is no need for $+c$
M1: Substitutes $V=0, t=0$ and proceeds to find a value for c. There must have been an attempt at integrating to achieve a function in V and t with a constant of integration.
$\mathrm{A} 1^{*}$: Correct integration and value for c with at least one intermediate step with c substituted back in the equation before proceeding to the given answer.
(b)(ii)

B1: $150 \mathrm{~cm}^{3}$. Must include units.
(c)

M1: Attempts to substitute $\mathrm{t}=3$ into the equation for V. Allow if there is a slip in substitution. dM1: Uses their V in $V=\frac{4}{3} \pi r^{3}$ to find a value for r
A1: cao $r=2.88 \mathrm{~cm}$. Must be to 3 s.f.. Must include units unless already penalised in (b)(ii).
(d)

M1: Attempts to use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t}$ (oe) with the given formula for $\frac{\mathrm{d} V}{\mathrm{~d} t}$ and an attempt at substituting their $\frac{\mathrm{d} V}{\mathrm{~d} r}$ (allow if this substitution is not in the correct place if a correct chain rule has been stated.)
dM 1 : Substitutes both $t=3$ and their value for r and proceeds to find a value for $\frac{\mathrm{d} r}{\mathrm{~d} t}$. If no substitution shown, the answer must be correct for their r to imply the method (may need to check). A1: awrt $0.11 \mathrm{~cm} \mathrm{~s}^{-1}$. Must include units unless already penalised in (b)(ii) or (c).

Question Number	Scheme	Marks
8 (a)	At $t=\frac{\pi}{4} \quad P=\left(\frac{1}{2}, 2\right)$	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}=\frac{2 \sec ^{2} t}{2 \sin t \cos t}=4 \text { when } t=\frac{\pi}{4}$	M1 A1
	$\begin{aligned} & \text { Equation of } l \text { : } \\ & y-2=-\frac{1}{4}\left(x-\frac{1}{2}\right) \Rightarrow 8 y-16=-2 x+1 \Rightarrow 8 y+2 x=17^{*} \end{aligned}$	$\begin{aligned} & \text { dM1 A1 * } \\ & \text { cso } \end{aligned}$
		(5)
(b)	$\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int 2 \tan t \times 2 \sin t \cos t \mathrm{~d} t$	M1
	$=\int 4 \sin ^{2} t \mathrm{~d} t$	A1
	$=\int 2-2 \cos 2 t \mathrm{~d} t=2 t-\sin 2 t$	dM1 A1
	Total area of $S=[2 t-\sin 2 t]_{0}^{\frac{\pi}{4}}+\frac{1}{2} \times 8 \times 2=\frac{\pi}{2}-1+8=\frac{\pi}{2}+7$	M1 A1
		(6)
		(11 marks)

Notes:

(a)

B1: Correct coordinates for P stated or implied by working.
M1: Attempts to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using $\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}$ at $t=\frac{\pi}{4}$. Condone poor differentiation. Substitution of the $\frac{\pi}{4}$ is sufficient for the method. Alternatively, may attempt $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $-\frac{\mathrm{d} x}{\mathrm{~d} y}$. Accept a value following finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (or its reciprocal etc) as an attempt to evaluate at $t=\frac{\pi}{4}$ if no contrary working is shown but check carefully as the correct answer may arise from incorrect working.
A1: Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ (oe equation) following correct differentiation. May be implied.
dM 1 : Attempts to find the equation of the normal at $t=\frac{\pi}{4}$. It is dependent upon the previous
M and use of their P. The value of the gradient used must be correct for their differential.
A1*: cso Correct proof leading to $8 y+2 x=17$
(b)

M1: Attempts $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int 2 \tan t \times " 2 \sin t \cos t " \mathrm{~d} t$ with their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ condoning slips on coefficients.
A1: $\int 4 \sin ^{2} t \mathrm{~d} t$
dM 1 : Uses $\cos 2 t= \pm 1 \pm 2 \sin ^{2} t$ and integrates $\int \pm p \pm q \cos 2 t \mathrm{~d} t$ to a form $\pm a t \pm b \sin 2 t$ See note below.
A1: $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=2 t-\sin 2 t \quad$ See note below.
M1: Full method to find area of region S. Finds the sum of their values for $\int_{0}^{\frac{\pi}{4}} y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$ and $\frac{1}{2}\left(\frac{17}{2}-P_{x}\right) \times P_{y}$. Condone poor integration for this mark as long as they are attempting to apply the correct limits to their result. They may attempt the area under the line by integration:
$\int_{P_{x}}^{\frac{17}{2}}-\frac{1}{4} x+\frac{17}{8} \mathrm{~d} x$ In such a method condone minor slips, but must be attempting correct limits.
A1: $\frac{\pi}{2}+7$
Note: If the t 's becomes x 's during the integration, then allow the M's and the A's if recovered but if $2 x-\sin 2 x$ or with mixed variables is found and x values substituted then it is M1A0 for the integral and M0 for the method for area.

| 8 (a)
 Alt | At $t=\frac{\pi}{4} P=\left(\frac{1}{2}, 2\right)$ |
| :--- | :--- | :--- |
| | $y=\frac{2 \sin t}{\cos t}=\frac{2 \sqrt{x}}{\sqrt{1-x}} y^{2}=\frac{4 x}{1-x}$ |
| $\frac{\mathrm{~d} y}{\mathrm{~d} x}=\left.\frac{x^{-\frac{1}{2}}(1-x)^{\frac{1}{2}}-2 \sqrt{x} \times-\frac{1}{2}(1-x)^{-\frac{1}{2}}}{1-x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}\right\|_{x=\frac{1}{2}}=4$ or | |
| $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left.\frac{4(1-x)-4 x \times-1}{(1-x)^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}\right\|_{x=\frac{1}{2}, y=2}=4$ oe | B1 |
| $y-2=-\frac{1}{4}\left(x-\frac{1}{2}\right) \Rightarrow 8 y-16=-2 x+1 \Rightarrow 8 y+2 x=17 *$ | M1 A1 |

A1: Correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ (oe equation) following correct differentiation and from correct work.
dM 1 : Attempts to find the equation of the normal at their x and y values.
It is dependent upon the previous M and use of their P.
A1*: cso Correct proof leading to $8 y+2 x=17$

Page 18 of 20

Question Number	Scheme	Marks
9 (a)	Let $p=3 k+2$ then $(3 k+2)^{3}=27 k^{3}+54 k^{2}+36 k+8$	M1
	$=3 \times\left(9 k^{3}+18 k^{2}+12 k+3\right)-1$ not a multiple of 3	A1
	So p cannot be of form $3 k+1$ or $3 k+2$, since p^{3} is a multiple of 3 . Hence p must be a multiple of 3 , a contradiction of our assumption, hence for all integers p, when p^{3} is a multiple of 3 , then p is a multiple of 3	A1
		(3)
(b)	Assumption: there exist (integers) p and q such that $\sqrt[3]{3}=\frac{p}{q}$ (where p and q have no (non-trivial) common factors.)	B1
	Then $\sqrt[3]{3}=\frac{p}{q} \Rightarrow p^{3}=3 q^{3}$	M1
	So p^{3} is a multiple of 3 and (so) p is a multiple of 3	A1
	But $p=3 k \Rightarrow 27 k^{3}=3 q^{3} \Rightarrow q^{3}=9 k^{3}$	dM1
	Hence q^{3} is a multiple of 3 so q is a multiple of 3 , but as p and q have no (non-trivial) common factors, this is a contradiction. Hence $\sqrt[3]{3}$ is an irrational number.*	A1*
		(5)
		(8 marks)

(a)

M1: Attempts to expand $(3 k+2)^{3}$ or $(3 k-1)^{3}$.
Look for a cubic expression with 4 terms with at least two correct (allowing for incorrect signs).
A1: Achieves a correct $3 \times(\ldots)+r,|r|<10$ form for the expansion and states not a multiple of 3 . Suitable forms include $(3 k+2)^{3}=3\left(9 k^{3}+18 k^{2}+12 k+2\right)+2=3\left(9 k^{3}+18 k^{2}+12 k+3\right)-1$ or $3\left(9 k^{3}+18 k^{2}+12 k\right)+8$ or $(3 k-1)^{3}=3\left(9 k^{3}-9 k^{2}+3 k\right)-1$ etc.
Alternatively, achieves correct $(3 k+2)^{3}=27 k^{3}+54 k^{2}+36 k+8$ or $(3 k-1)^{3}=27 k^{3}-27 k^{2}+9 k-1$ with a reason why it is not a multiple of 3 e.g 3 divides 27 , 54 and 36 , but not 8 hence not divisible by 3 .
A1: Completes the proof. Must have scored both previous marks and a reference to both cases (in some form) leading to a "contradiction" and some indication that proof is complete. It is unlikely to be as complete as that shown in the scheme, but all three bold points must be conveyed. E.g. as a minimum after satisfying the first A"both cases give a contradiction hence the original statement is true".
(b)

May use different letters throughout.

B1: Sets up algebraically the initial statement to be contradicted. Essentially for showing they know what a rational number is algebraically. There is no requirement for this mark to state that p and q are integers with no (non-trivial) common factors (this may be implied for this mark).
M1: Cubes correctly and multiplies through by q^{3}
A1: Deduces that both p^{3} is a multiple of 3 and hence p is a multiple of 3 . Jumping directly to p is a multiple of 3 is A0.
dM 1 : Sets $p=3 k$ and proceeds to find q^{3} in terms of k. (May use a different letter.)
A1: Completes the proof. This requires

- Correct algebraic statements
- Correct deductions in correct order. E.g. p^{3} is a multiple of 3 so p is a multiple of 3
- initial statement must have included that p and q are integers (or accept natural numbers or a $\frac{p}{q}$ is a fraction) and have no common factors (or are co-prime, or in simplest form)
- correct reason for contradiction and acceptable conclusion
- There must have been no contrary statements during the proof (e.g. that p and q are prime)

