
(a)(i)

M1: Sets $\frac{1}{2} k=\frac{1}{8}$ or $\frac{1}{2} k x=\frac{1}{8} x$ and proceeds to find k. Implied by a correct value for k
A1: $k=\frac{1}{4}$ oe such as $\frac{2}{8}$ or 0.25
(a)(ii)

M1: Correct attempt at 3rd or 4th term. Eg. $A x^{2}=\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right)}{2!} \times(k x)^{2}$ or $B x^{3}=\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{3!} \times(k x)^{3}$ with an attempt at substituting in their value for k to find a value for A or a value for B. Condone a missing bracket around the $k x$ terms so allow with k instead of k^{2} or k^{3} respectively. These may be simplified so award for $A=-\frac{1}{8} \times(" k ")^{2}$ or $B=\frac{1}{16} \times(" k ")^{3}$ again, condoning k instead of k^{2} or k^{3} respectively.
A1: $A=-\frac{1}{128}$ o.e. There is no requirement to simplify the fraction
A1: $B=\frac{1}{1024}$ o.e You may occasionally see $B=\frac{3}{3072}$ which is fine.
(b)

M1: For an attempt to substitute

- either $k x=0.15$ into an expansion of the form $1 \pm p \times(k x) \pm q \times(k x)^{2} \pm r \times(k x)^{3}$
- or $x=\frac{0.15}{" k "}$ into their $1+\frac{1}{8} x+" A " x^{2}+" B " x^{3}$

A1: 1.072398 Must be to 6 decimal places.

Question Number	Scheme	Marks
2	Achieves a lower limit of 2 Attempts $\alpha \int y^{2} \mathrm{~d} x=\alpha \int \frac{81}{(2 x-3)^{2.5}} \mathrm{~d} x=\alpha \times \frac{-27}{(2 x-3)^{1.5}}$ Correct attempt at volume of solid generated under curve $=$ $\begin{gathered} =\pi \int_{{ }^{22} 2}^{6} y^{2} \mathrm{~d} x=\left[\frac{k}{(2 x-3)^{1.5}}\right]_{" 22}^{6}=\left(\left(-\frac{27}{27}\right)-\left(-\frac{27}{1}\right)\right) \\ \text { Volume }=26 \pi \end{gathered}$ $\begin{aligned} \text { Correct attempt at volume of solid } & =\pi \times 9^{2} \times(6-" 2 ")-" 26 \pi " \\ & =298 \pi \end{aligned}$	B1 M1, A1 dM1 A1 ddM1 A1 (7 marks)

B1: Finds the lower limit. This may be awarded anywhere. Accept on the diagram or in the limits of an integral
M1: Integrates an expression of the form $\int \frac{\ldots}{(2 x-3)^{2.5}} \mathrm{~d} x$ and achieves $\frac{\ldots}{(2 x-3)^{1.5}}$ oe
A1: Correct integration of $\alpha \int y^{2} \mathrm{~d} x=\alpha \int \frac{81}{(2 x-3)^{2.5}} \mathrm{~d} x$ giving a solution $\alpha \times \frac{-27}{(2 x-3)^{1.5}}$ o.e.
following through on their α. Typical values of α will be $1, \pi$ or 2π. No need to simplify here
dM1: Attempts to find the volume of the solid generated by rotating the area under the curve.
Look for $\left[\frac{\ldots}{(2 x-3)^{1.5}}\right]_{" 2_{2 "}}^{6}=\ldots$ It is dependent upon the previous M1.
The top limit must be 6 and the bottom limit must be their solution to $\frac{9}{(2 x-3)^{1.25}}=9$
A1: Correct exact volume for the solid generated by rotating the area under the curve. Volume $=26 \pi$
This may be the second part of a larger/complete expression. E.g. -26π
ddM1: Correct method for the volume of the solid formed by rotating the area above the curve.
Accept $\pi \times 9^{2} \times(6-" 2 ")-" 26 \pi "$
It is dependent both previous M's
A1: 298π

www.CasperYC.club/wma14

Question Number	Scheme	Marks
$\mathbf{3 ~ (a) ~}$	Attempts to find $\frac{1 / 3 \times 20^{2} \times 24}{160}=20$ seconds	M1 A1
(b)	Attempts $\frac{\mathrm{d} V}{\mathrm{~d} h}=h^{2}+\frac{8}{3} h$	
Attempts to use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t} \Rightarrow 160=\left(h^{2}+\frac{8}{3} h\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}$		
Substitutes $h=5 \Rightarrow 160=\left(5^{2}+\frac{40}{3}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{96}{23}(4.2) \mathrm{cm} \mathrm{s}^{-1}$	M1	

(a)

M1: Attempts to find the volume, using the given formula, at $h=20$ and dividing by 160 . Implied by 20
Condone slips. For example they may have incorrectly multiplied out/calculated the expression for V
A1: 20 seconds. This requires the correct units as well
(b)

M1: For an attempt to differentiate V
Scored for an attempt to multiply out and then differentiate term by term to achieve $\frac{\mathrm{d} V}{\mathrm{~d} h}=\alpha h^{2}+\beta h$ or via the product rule to achieve $V=\frac{1}{3} h^{2}(h+4) \Rightarrow \frac{\mathrm{d} V}{\mathrm{~d} h}=(h+4) \times p h+q h^{2}$
M1: Attempts to use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}$ (or equivalent) with $\frac{\mathrm{d} V}{\mathrm{~d} t}=160$ and their $\frac{\mathrm{d} V}{\mathrm{~d} h}$.
A1: Correct expression involving $\frac{\mathrm{d} h}{\mathrm{~d} t}$ and $h \quad$ E.g. $160=\left(h^{2}+\frac{8}{3} h\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}$
dM1: Dependent upon the previous M only. It is for substituting $h=5$ and proceeding to a value for $\frac{\mathrm{d} h}{\mathrm{~d} t}=\ldots$
A1: Either $\frac{96}{23}$ or awrt $4.2 \mathrm{~cm} \mathrm{~s}^{-1}$ There is no requirement for the units here

Question	Scheme	Marks
4.	$\begin{aligned} & \begin{array}{l} \int_{1}^{4} \frac{10}{5 x+2 x \sqrt{x}} \mathrm{~d} x \end{array} \\ & \begin{aligned} u=\sqrt{x} \Rightarrow x=u^{2} & \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2 u \end{aligned} \\ & \begin{aligned} \int \frac{10}{5 x+2 x \sqrt{x}} \mathrm{~d} x & =\int \frac{10}{5 u^{2}+2 u^{3}} 2 u \mathrm{~d} u \\ & =\int \frac{20}{5 u+2 u^{2}} \mathrm{~d} u=\int \frac{4}{u}-\frac{8}{5+2 u} \mathrm{~d} u \end{aligned} \\ & =4 \ln u-4 \ln (5+2 u) \end{aligned} \begin{array}{r} \text { Limits }=[4 \ln u-4 \ln (5+2 u)]_{1}^{2}=4 \ln 2-4 \ln 9+4 \ln 7=\ldots \\ =4 \ln \left(\frac{14}{9}\right) \end{array}$	M1 A1 dM1 A1 ddM1 M1 A1 (8 marks)

B1: For $\frac{\mathrm{d} x}{\mathrm{~d} u}=2 u$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ or equivalent
M1: Attempts to write all terms in the integral in terms of u (inc the $\mathrm{d} x$)
Condone slips for this mark BUT the $\mathrm{d} x$ CANNOT just be replaced by $\mathrm{d} u$.
Look for either $x \rightarrow u^{2}$ or $x \sqrt{x} \rightarrow u^{3}$ with either $\mathrm{d} x \rightarrow \mathrm{f}(u) \mathrm{d} u$ or $\mathrm{d} x \rightarrow k \times \mathrm{d} u, k \neq 1$
A1: Correct integrand in terms of just u which may be unsimplified. E.g $\int \frac{10}{5 u^{2}+2 u^{3}} 2 u \mathrm{~d} u$ dM 1 : Attempts to use PF and writes their integrand in terms of its component fractions.

Look for an integral of the form $\int \frac{P}{Q u+R u^{2}} \mathrm{~d} u \rightarrow \int \frac{p}{u}+\frac{q}{Q+R u} \mathrm{~d} u$
A1: Correct PF $\int \frac{4}{u}-\frac{8}{5+2 u}(\mathrm{~d} u)$
ddM1: For $\ldots \ln u \pm \ldots \ln (5+2 u)$ but follow through on their PF's which must be of a similar form
M1: Uses the limits 1 and 2 within their attempted integral. The integration may be incorrect.
Alternatively substitutes $u=\sqrt{x}$ and uses the limits 1 and 4 within their attempted integral
A1: $4 \ln \left(\frac{14}{9}\right)$

Question Number	Scheme	Marks
5 (a)	$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \mathrm{e}^{-2 x}-3$	$\stackrel{\text { B1 M1 }}{=} \mathrm{Al}$
	$\left(\mathrm{e}^{-2 x}-2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y \mathrm{e}^{-2 x}+3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 y \mathrm{e}^{-2 x}+3}{\mathrm{e}^{-2 x}-2 y} *$	$\mathrm{A} 1^{*}$ (4)
(b)	Puts $x=0$ into the equation of the curve $\Rightarrow y=y^{2} \Rightarrow y=1$	B1
	Attempts tangent at $(0,0)$ or $(0,1) \quad y=3 x$ or $y=-5 x+1$	M1 A1
	Solves $y=3 x$ with $y=-5 x+1 \Rightarrow R=\left(\frac{1}{8}, \frac{3}{8}\right)$	dM1 A1
		(5)
		(9 marks)

(a) Originally scored M1 B1 A1 A1, now B1 M1 A1 A1

B 1 : Correct differentiation using the chain rule $y^{2} \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$.
M1: Attempts to apply the product rule of differentiation on $y \mathrm{e}^{-2 x}$ to give $\mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \pm \ldots y \mathrm{e}^{-2 x}$
A1: Correct differentiation $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \mathrm{e}^{-2 x}-3$
Allow $2 y \mathrm{~d} y=\mathrm{e}^{-2 x} \mathrm{~d} y-2 y \mathrm{e}^{-2 x} \mathrm{~d} x-3 \mathrm{~d} x$
$\mathrm{A} 1^{*}$: Proceeds to the given answer via an intermediate line equivalent to $\left(\mathrm{e}^{-2 x}-2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y \mathrm{e}^{-2 x}+3$ with correct bracketing.
(b)

B1: Deduces or implies that $x=0, y=1$ at P. May state or use coordinates of $P(0,1)$
M1: Scored for an attempt to find the equation of the tangent at O or the equation of the tangent at P
E.g. Substitutes $(0,0)$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y \mathrm{e}^{-2 x}+3}{\mathrm{e}^{-2 x}-2 y}=\beta$ and states $y=\beta x$

Alternatively substitutes $(0, " 1 ")$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y \mathrm{e}^{-2 x}+3}{\mathrm{e}^{-2 x}-2 y} \rightarrow " k$ "and attempts $y-1=" k " x$ or equivalent
A1: Achieves a correct equation for either tangent. Look for either $y=3 x$ or $y=-5 x+1$ o.e.
dM 1 : Correct attempt at both tangents with an attempt to solve simultaneously.
For the attempt to solve accept $y=3 x, y=-5 x+1 \Rightarrow x=\ldots, y=\ldots$
A1: Correct coordinates for $R=\left(\frac{1}{8}, \frac{3}{8}\right)$ oe

Question Number	Scheme	Marks
6 (a)(i)	Area $R=\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int 4 \sin t \times-4 \sin 2 t \mathrm{~d} t$	M1 A1
	$=-\int 32 \sin ^{2} t \cos t \mathrm{~d} t$	dM1
	$x=0 \Rightarrow t=\frac{\pi}{4} \text { and } y=0 \Rightarrow t=0 \Rightarrow \text { Area }=-\int_{\frac{\pi}{4}}^{0} 32 \sin ^{2} t \cos t \mathrm{~d} t=\int_{0}^{\frac{\pi}{4}} 32 \sin ^{2} t \cos t \mathrm{~d} t \quad *$	A1*
		(4)
(ii)	$\text { Area }=\left[\frac{32}{3} \sin ^{3} t\right]_{0}^{\frac{\pi}{4}}=\frac{32}{3} \times \frac{2 \sqrt{2}}{8}=\frac{8 \sqrt{2}}{3}$	M1 A1
		(2)
(b)	Attempts to use $\cos 2 t=1-2 \sin ^{2} t \Rightarrow \frac{x}{2}=1-2\left(\frac{y}{4}\right)^{2}$	M1A1
	$y=\sqrt{8-4 x}$	A1
		(3)
(c)	Range is $0 \leqslant \mathrm{f} \leqslant 4$	B1
		(1)
		(10 marks)

(a)(i)

M1: Attempts to multiply y by $\frac{\mathrm{d} x}{\mathrm{~d} t}$ to achieve an integrand of the form $\pm k \sin t \sin 2 t$
Look for area $R=\int y \frac{\mathrm{~d} x}{\mathrm{~d} t}(\mathrm{~d} t)=\int(4) \sin t \times \pm k \sin 2 t(\mathrm{~d} t)$ but condone a missing 4 or $\mathrm{d} t$
A1: Correct integrand. Achieves area $R=\int y \frac{\mathrm{~d} x}{\mathrm{~d} t}(\mathrm{~d} t)=\int 4 \sin t \times-4 \sin 2 t(\mathrm{~d} t)$
Condone a missing $\mathrm{d} t$ and do not be concerned by the limits. Allow unsimplified.
dM 1 : Substitutes $\sin 2 t=2 \sin t \cos t \rightarrow$ seen or implied $= \pm \int A \sin ^{2} t \cos t \mathrm{~d} t$
Dependent upon previous M. Condone a missing $\mathrm{d} t$ and do not be concerned by the limits.
A1*: Achieves area $\left(=\int_{0}^{2} y \mathrm{~d} x\right)=-\int_{\frac{\pi}{4}}^{0} 32 \sin ^{2} t \cos t \mathrm{~d} t \rightarrow \int_{0}^{\frac{\pi}{4}} 32 \sin ^{2} t \cos t \mathrm{~d} t$
This is a given answer so you must see

- evidence of the $\mathrm{d} t$ in at least one line other than the given answer
- correct application of the limits as seen above with as a minimum $-\int_{\frac{\pi}{4}}^{0} \ldots \mathrm{~d} t \rightarrow \int_{0}^{\frac{\pi}{4}} \ldots \mathrm{~d} t$
(a)(ii)

M1: Integrates to a form $\left[A \sin ^{3} t\right]$ with some attempt to apply the limit(s)
You may see a substitution $u=\sin t$ which is fine. Just look for $A u^{3}$ with some attempt to apply the adapted limits
A1: Correct answer $\frac{8 \sqrt{2}}{3}$ o.e. following correct algebraic integration.
Cannot be scored without the M mark.
(b)

M1: Attempts to use a double angle formula of the form $\cos 2 t= \pm 1 \pm 2 \sin ^{2} t$ with the parametric equations to get a Cartesian equation.
If the parametric equations are substituted into the given form of the answer $y=\sqrt{a x+b}$, marks are only scored when the double angle formula is used
A1: Any correct un-simplified equation $\frac{x}{2}=1-2\left(\frac{y}{4}\right)^{2}$
On the alternative method, this A mark is scored when the candidate writes down

$$
a+2 b=0 .-4 b=16 \Rightarrow a=\ldots, b=\ldots
$$

A1: $y=\sqrt{8-4 x} \quad$ or $y=\sqrt{-4 x+8}$ ONLY
(c)

B 1 : Range is $0 \leqslant \mathrm{f} \leqslant 4$
Allow other acceptable forms such as $0 \leqslant y \leqslant 4,0 \leqslant \mathrm{f}(x) \leqslant 4$ and $[0,4]$
Examples of unacceptable forms are $0 \leqslant x \leqslant 4,[0,4)$
www.CasperyC.club/wma14

Question Number	Scheme	Marks
7 (a)	Finds $\left.\left\lvert\, \begin{array}{l}4 \\ 4 \\ 2\end{array}\right.\right) \mid=\sqrt{4^{2}+4^{2}+2^{2}}=6$ and attempts $\frac{1}{" 6 "}\left(\begin{array}{l}4 \\ 4 \\ 2\end{array}\right)$	M1
	$\overrightarrow{O A}=\left(\begin{array}{c} 2 / 3 \\ 2 / 3 \\ 1 / 3 \end{array}\right) \mathrm{oe}$	A1
(b)	Co-ordinates or position vector of point $X=\left(\begin{array}{r}1+4 \lambda \\ -10+4 \lambda \\ -9+2 \lambda\end{array}\right)$	(2) M1
	$\begin{gathered} \overrightarrow{O X} \cdot\left(\begin{array}{l} 4 \\ 4 \\ 2 \end{array}\right)=0 \Rightarrow 4(1+4 \lambda)+4(-10+4 \lambda)+2(-9+2 \lambda)=0 \\ \quad X=(7,-4,-6) \end{gathered}$	dM1 ddM1 A1 A1
(c)	Finds $O X=\sqrt{7^{2}+(-4)^{2}+(-6)^{2}}=\sqrt{101}$ and $O A=1$ Area $O X A=\frac{1}{2} \times 1 \times \sqrt{101}=\frac{\sqrt{101}}{2}$	(5) M1 dM1 A1
		$\text { (10 marks) }^{(3)}$

Handy diagram

(a)

M1: Correct attempt at the unit vector. Look for an attempt at $\sqrt{4^{2}+4^{2}+2^{2}}$ and use of $\frac{\mathbf{r}}{|\mathbf{r}|}$ where $\mathbf{r}=\left(\begin{array}{l}4 \\ 4 \\ 2\end{array}\right)$ or equivalent vector form such as $\mathbf{r}=(4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k})$. Condone an attempt to find the coordinates of A

A1: $\overrightarrow{O A}=\left(\begin{array}{c}1 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right)$ or equivalent such as $\overrightarrow{O A}=\frac{1}{6}\left(\begin{array}{l}4 \\ 4 \\ 2\end{array}\right)$ or $\overrightarrow{O A}=\frac{1}{6}(4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k})$ but must be in vector form and

not in coordinate form.

(b)

M1: For an attempt at the co-ordinates or position vector of point $X=(1+4 \lambda,-10+4 \lambda,-9+2 \lambda)$ or $\left(\begin{array}{c}1+4 \lambda \\ -10+4 \lambda \\ -9+2 \lambda\end{array}\right)$
dM 1: For using $\overrightarrow{O X} .\left(\begin{array}{l}4 \\ 4 \\ 2\end{array}\right)=0$ to set up an equation in λ
Alternatively finds $O X^{2}=(1+4 \lambda)^{2}+(-10+4 \lambda)^{2}+(-9+2 \lambda)^{2}$ and attempts to differentiate and set $=0$
May use $O X^{2}+O A^{2}=A X^{2}$ to set up an equation in λ
ddM1: Solves for λ This is dependent upon having scored both previous M's
A1: Correct value for $\lambda=1.5$
A1: Correct coordinates for $X=(7,-4,-6)$. Condone position vector form $7 \mathbf{i}-4 \mathbf{j}-6 \mathbf{k}$ o.e.
(c)

M1: Finds all elements required to calculate the area.
In the main scheme this would be the distance $O X$ or $O X^{2}$ AND distance $O A$ or $O A^{2}$ (which is 1)
dM 1 : Correct method of finding the area of $O X A=\frac{1}{2} \times O X \times 1$
A1: $A r e a=\frac{\sqrt{101}}{2}$ o.e

There are various alternatives for part (c). Amongst others are;
Alt I via vector product.
$\frac{1}{2} \times\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -4 & -6 \\ 2 / 3 & 2 / 3 & 1 / 3\end{array}\right|=\frac{1}{2} \times\left|\frac{8}{3} \mathbf{i}-\frac{19}{3} \mathbf{j}+\frac{22}{3} \mathbf{i}\right|=\frac{1}{2} \times \sqrt{\left(\frac{8}{3}\right)^{2}+\left(-\frac{19}{3}\right)^{2}+\left(\frac{22}{3}\right)^{2}}=\frac{\sqrt{101}}{2}$
M1: For an attempt at $\frac{1}{2} \times\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -4 & -6 \\ 2 / 3 & 2 / 3 & 1 / 3\end{array}\right|=\frac{1}{2} \times\left|\frac{8}{3} \mathbf{i}-\frac{19}{3} \mathbf{j}+\frac{22}{3} \mathbf{i}\right|$
dM1: Followed by an attempt at finding the modulus of the resulting vector multiplied by $1 / 2$
Alt II via scalar products
M1: Attempts to find all three components required to find the area triangle $O X A$
E.g. Angle $O X A$ with length of side $O X$ and $X A$

Alternatively angle $O A X$ with length of side $O A$ and $X A$
For this to be scored

- appropriate gradient vectors need to be attempted by subtracting
- a correct attempt at using $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ to find $\cos \theta$ or θ
dM 1 : Full attempt at area of triangle using $\frac{1}{2}|O X \| X A| \sin (O X A)$ or equivalent

Question Number	Scheme	Marks
8 (a)	$\int y^{-\frac{1}{3}} \mathrm{~d} y=\int 6 x \mathrm{e}^{-2 x} \mathrm{~d} x$	B1
	$\frac{3}{2} y^{\frac{2}{3}}=-3 x \mathrm{e}^{-2 x}+\int 3 \mathrm{e}^{-2 x} \mathrm{~d} x$	M1 M1
	$\frac{3}{2} y^{\frac{2}{3}}=-3 x \mathrm{e}^{-2 x}-\frac{3}{2} \mathrm{e}^{-2 x}+c$	dM1 A1
	Substitutes $(0,1) \Rightarrow c=3$	M1
	$y^{2}=\left(-2 x \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}+2\right)^{3}$	A1
(b)		(7)
	As $x \rightarrow \infty, \mathrm{e}^{-2 x} \rightarrow 0$ and $y^{2}=(2)^{3} \Rightarrow y=2^{\frac{3}{2}}$	M1 A1
		(9 marks)

(a)

B1: Separates the variables either $\int y^{-\frac{1}{3}} \mathrm{~d} y=\int 6 x \mathrm{e}^{-2 x} \mathrm{~d} x$ or $\int \frac{1}{6} y^{-\frac{1}{3}} \mathrm{~d} y=\int x \mathrm{e}^{-2 x} \mathrm{~d} x$
Condone with missing integral signs but the $\mathrm{d} x$ and $\mathrm{d} y$ must be present and in the correct positions
M1: For integrating the lhs $y^{-\frac{1}{3}} \rightarrow y^{\frac{2}{3}}$
M1: For integrating the rhs by parts the right way around. Look for $\int x \mathrm{e}^{-2 x} \mathrm{~d} x \rightarrow \ldots \mathrm{e}^{-2 x} \pm \int \ldots \mathrm{e}^{-2 x} \mathrm{~d} x$ dM : For fully integrating the rhs to obtain ... $\mathrm{e}^{-2 x} \pm \ldots \mathrm{e}^{-2 x}$. Depending upon the previous M A1: Correct integration with or without ' $+c^{\prime}$.

Look for $\frac{3}{2} y^{\frac{2}{3}}=-3 x \mathrm{e}^{-2 x}-\frac{3}{2} \mathrm{e}^{-2 x}+c$ or equivalent such as $3 y^{\frac{2}{3}}=-6 x \mathrm{e}^{-2 x}-3 \mathrm{e}^{-2 x}+a$ dM 1 : Must have a $"+c$ " now. Substitutes $(0,1) \Rightarrow c=\ldots$

It is dependent upon having a correct attempt to integrate one side so M1 or M2 must have been awarded.
A1: CSO $y^{2}=\left(-2 x \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}+2\right)^{3}$
(b)

M1: For $\mathrm{e}^{-2 x} \rightarrow 0 y^{2}=(" 2 ")^{3}$
Follow through on their $\mathrm{g}(x)$ in $y^{2}=\mathrm{g}(x)$ but $\mathrm{g}(x)$ must be a function of $\mathrm{e}^{-k x}$ with $\mathrm{g}(0) \neq 0$ Implied by a correct decimal answer for their $y^{2}=\mathrm{g}(x)$
A1: $y=2^{\frac{3}{2}}$ o.e such as $y=\sqrt{8}$ cso. ISW after sight of this. Condone $y= \pm 2^{\frac{3}{2}}$ o.e.

(i)

M1: Attempts any two of $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$.
Condone the wrong way around but it must be subtraction.
Allow marked in the correct place on a diagram
dM1: Uses the given information.
Accept $\overrightarrow{A B}=\frac{1}{3} \overrightarrow{A C}, \quad \overrightarrow{B C}=2 \times \overrightarrow{A B}, \quad \overrightarrow{B C}=\frac{2}{3} \times \overrightarrow{A C} \quad$ etc condoning slips as in previous M1.
A1*: Fully correct work inc bracketing leading to the given answer $\mathbf{c}=3 \mathbf{b}-2 \mathbf{a}$
Expect to see the brackets multiplied out. So $\mathbf{c}-\mathbf{b}=2 \times(\mathbf{b}-\mathbf{a}) \Rightarrow \mathbf{c}-\mathbf{b}=2 \mathbf{b}-2 \mathbf{a} \Rightarrow \mathbf{c}=3 \mathbf{b}-2 \mathbf{a}$ is fine.

www.CasperYC.club/wma14

(ii)

B1: For setting up the contradiction.
Eg Assume that there exists a number n that isn't a multiple of 3, yet n^{2} is a multiple of 3
As a minimum accept something like " define a number n such that n is not a multiple of 3 but n^{2} is" M1: States that $m=3 p+1$ or $m=3 p+2$ and attempts to square.

Alternatives exist such as $m=3 p+1$ or $m=3 p-1$
Using modulo 3 arithmetic it would be $1 \rightarrow 1$ and $2 \rightarrow 4=1$
M1: States that $m=3 p+1$ AND $m=3 p+2$ and attempts to square o.e.
A1: Achieves forms that can be argued as to why they are NOT a multiple of 3
E.g. $m^{2}=(3 p+1)^{2}=3\left(3 p^{2}+2 p\right)+1$ or even $9 p^{2}+6 p+1$
and $m^{2}=(3 p+2)^{2}=3\left(3 p^{2}+4 p+1\right)+1$ or even $9 p^{2}+12 p+4$
A1: Correct proof which requires

- Correct calculations
- Correct reasons. E.g. $9 p^{2}+12 p+4$ is not a multiple of 3 as 4 is not a multiple of 3 There are many ways to argue these. E.g $m^{2}=(3 p+1)^{2}=3\left(3 p^{2}+2 p\right)+1$ is sufficient as long as followed (or preceded by) "not a multiple of 3"
- Minimal conclusion such as \checkmark. Note that B0 M1 M1 M1 A1 is possible

