$\begin{gathered} \text { wwuretispe } \\ \text { Number } \end{gathered}$	YC.club/wma14 Scheme	Marks
1(a)	$\left(\frac{1}{4}-5 x\right)^{\frac{1}{2}}=\frac{1}{2}(\ldots)$	B1
	$=(1-20 x)^{\frac{1}{2}}=1+\left(\frac{1}{2}\right) \times(-20 x)+\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right)}{2!} \times(-20 x)^{2}+\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{3!} \times(-20 x)^{3} \ldots$	M1A1
	$=\frac{1}{2}-5 x-25 x^{2}-250 x^{3}+\ldots$	A1 A1
	Special case: If the final answer is left as $\frac{1}{2}\left(1-10 x-50 x^{2}-500 x^{3}+\ldots\right)$ Award SC B1M1A1A1A0	
		(5)
	Alternative by direct expansion	
	$\left(\frac{1}{4}-5 x\right)^{\frac{1}{2}}=\left(\frac{1}{4}\right)^{\frac{1}{2}}+\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)^{-\frac{1}{2}}(-5 x)^{1}+\frac{\frac{1}{2} \times-\frac{1}{2}}{2}\left(\frac{1}{4}\right)^{\frac{-3}{2}}(-5 x)^{2}+\frac{\frac{1}{2} \times-\frac{1}{2} \times-\frac{3}{2}}{3!}\left(\frac{1}{4}\right)^{-\frac{5}{2}}(-5 x)^{3}$	B1M1A1
	$=\frac{1}{2}-5 x-25 x^{2}-250 x^{3}+\ldots$	A1A1
(b)	$\begin{gathered} \left(\frac{1}{4}-\frac{5}{100}\right)^{\frac{1}{2}}=\left(\frac{1}{5}\right)^{\frac{1}{2}}=\frac{1}{2}-5 \times \frac{1}{100}-25\left(\frac{1}{100}\right)^{2}-250\left(\frac{1}{100}\right)^{3}+\ldots \\ \frac{\sqrt{5}}{5} \approx \frac{1789}{4000} \text { or } \frac{1}{\sqrt{5}} \approx \frac{1789}{4000} \\ \Rightarrow \sqrt{5} \approx 5 \times \frac{1789}{4000} \text { or } \sqrt{5} \approx 1 \div \frac{1789}{4000} \end{gathered}$	M1
	$\sqrt{5} \approx \frac{1789}{800}$ or $\frac{4000}{1789}$	A1
		(2)
		(7 marks)

(a)

B1: For taking out a factor of $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or $\frac{1}{2}$ or 0.5 etc.
M1: Expands $(1+k x)^{\frac{1}{2}}, k \neq \pm 1$ with the correct structure for the third or fourth term e.g. $\pm \frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2!} \times(k x)^{2}$ or $\pm \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} \times(k x)^{3}$ with or without the bracket around the $k x$

A1: For either term three or term four being correct in any form.
E.g. $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} \times(20 x)^{2}$ or $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} \times(-20 x)^{2}$ or $\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} \times(-20 x)^{3}$ or $-\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} \times(20 x)^{3}$

The brackets must be present unless they are implied by subsequent work. This mark is independent of the B mark.
A1: Two terms correct and simplified of $\frac{1}{2}-5 x-25 x^{2}-250 x^{3}$. Allow if any of the '-‘signs are written as "+-".
A1: All four terms correct and simplified of $\frac{1}{2}-5 x-25 x^{2}-250 x^{3}$. Allow the terms to be listed.
Ignore any extra terms and apply isw if necessary. If any of the '-‘ signs are written as "+-" score A0.

Alternative:

B1: For a first term of $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or $\frac{1}{2}$ or 0.5 etc.

WWW: Casperyc club/wma14
where $k \neq \pm 1$
A1: For either term three or term four being correct in any form.

$$
\text { e.g. } \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} \times\left(\frac{1}{4}\right)^{-\frac{3}{2}}(-5 x)^{2} \text { or } \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} \times\left(\frac{1}{4}\right)^{-\frac{5}{2}}(-5 x)^{3}
$$

The brackets must be present unless they are implied by subsequent work.
A1: Two terms correct and simplified of $\frac{1}{2}-5 x-25 x^{2}-250 x^{3}$. Allow if any of the '-' signs are written as "+-".
A1: All four terms correct and simplified of $\frac{1}{2}-5 x-25 x^{2}-250 x^{3}$. Allow the terms to be listed.
Ignore any extra terms and apply isw if necessary. If any of the '-' signs are written as "+-" score A0.
(b)

M1: Attempts to substitute $x=\frac{1}{100}$ into their part (a) and either multiplies by 5 or finds reciprocal.
A1: $(\sqrt{5}=) \frac{1789}{800}$ or $\frac{4000}{1789}$

wwWR世etispe Number	lub/wma14 Scheme	Marks
2(a)	$\overrightarrow{B A} \cdot \overrightarrow{B C}=-6 \times 2+2 \times 5-3 \times 8=(-26)$	M1
	Uses $\overrightarrow{B A} \cdot \overrightarrow{B C}=\|\overrightarrow{B A}\|\|\overrightarrow{B C}\| \cos \theta \Rightarrow-26=\sqrt{49} \times \sqrt{93} \cos \theta \Rightarrow \theta=\ldots$	dM1
	$\theta=112.65^{\circ}$	A1
		(3)
(b)	Attempts to use $\|\overrightarrow{B A}\|\|\overrightarrow{B C}\| \sin \theta$ with their θ	M1
	Area $=$ awrt 62.3	A1
		(2)
		(5 marks)

(a)

M1: Attempts the scalar product of $\pm \overrightarrow{A B} \cdot \pm \overrightarrow{B C}$ condone slips as long as the intention is clear
Or attempts the vector product $\pm \overrightarrow{A B} \times \pm \overrightarrow{B C}$ (see alternative 1)
Or attempts vector $A C$ (see alternative 2)
$\mathbf{d M 1}$: Attempts to use $\pm \overrightarrow{A B} \cdot \overrightarrow{B C}=|\overrightarrow{A B}||\overrightarrow{B C}| \cos \theta$ AND proceeds to a value for θ
Expect to see at least one correct attempted calculation for a modulus.
For example $\sqrt{2^{2}+5^{2}+8^{2}}(=\sqrt{93})$ or $\sqrt{6^{2}+2^{2}+3^{2}}(=7)$
Note that we condone poor notation such as: $\cos \theta=\frac{26}{7 \sqrt{93}}=67.35^{\circ}$ Depends on the first mark.

Must be an attempt to find the correct angle.

A1: $\theta=$ awrt 112.65° Versions finishing with $\theta=$ awrt 67.35° will normally score M1 dM1 A0
Angles given in radians also score A0 (NB $\theta=1.9661 \ldots$ or acute $1.1754 \ldots$)
Allow e.g. $\theta=67.35^{\circ} \Rightarrow \theta=180-67.35^{\circ}=112.65$ and allow $\cos \theta=\frac{26}{7 \sqrt{93}} \Rightarrow \theta=112.65$

1. Alternative using the vector product:

M1: Attempts the vector product $\pm \overrightarrow{A B} \times \pm \overrightarrow{B C}= \pm\left(\begin{array}{c}6 \\ -2 \\ 3\end{array}\right) \times \pm\left(\begin{array}{l}2 \\ 5 \\ 8\end{array}\right)= \pm\left(\begin{array}{c}-31 \\ -42 \\ 34\end{array}\right)$ condone slips as long as the intention is clear
dM1: Attempts to use $\pm \overrightarrow{A B} \times \overrightarrow{B C}=|\overrightarrow{A B}||\overrightarrow{B C}| \sin \theta$ AND proceeds to a value for θ
Expect to see at least one correct attempted calculation for a modulus on rhs and attempt at the modulus of the vector product
For example $\sqrt{2^{2}+5^{2}+8^{2}}$ or $\sqrt{6^{2}+2^{2}+3^{2}}$ and $\sqrt{31^{2}+42^{2}+34^{2}}(=\sqrt{3881})$
Note that we condone poor notation such as: $\sin \theta=\frac{\sqrt{3881}}{7 \sqrt{93}}=67.35^{\circ}$ Depends on the first mark.

Must be an attempt to find the correct angle.

A1: $\theta=$ awrt 112.65° Versions finishing with $\theta=$ awrt 67.35° will normally score M1 dM1 A0

www.CasperyC.club/wma14

2. Alternative using cosine rule:

M1: Attempts $\pm \overrightarrow{A C}= \pm(\overrightarrow{A B}+\overrightarrow{B C})= \pm(8 \mathbf{i}+3 \mathbf{j}+11 \mathbf{k})$ condone slips and poor notation as long as the intention is clear e.g. allow $\left(\begin{array}{c}8 \mathbf{i} \\ 3 \mathbf{j} \\ 11 \mathbf{k}\end{array}\right)$
dM1: Attempts to use $A C^{2}=A B^{2}+B C^{2}-2 A B \cdot B C \cos \theta$ AND proceeds to a value for θ

Must be an attempt to find the correct angle.

A1: $\theta=$ awrt 112.65°
(b)

M1: Attempts to use $|\overrightarrow{A B}||\overrightarrow{B C}| \sin \theta$ with their θ. You may see $\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{B C}| \sin \theta$ found first before it is doubled. or attempts the magnitude of their vector product e.g. $\sqrt{3881}$
A1: Area $=$ awrt 62.3. If this is achieved from an angle of $\theta=$ awrt 67.35° full marks can be scored
Note that there are other more convoluted methods for finding the area - score M1 for a complete and correct method using their values and send to review if necessary.
www.CasperYC.club/wma14

Question Number	Scheme	Marks
$\mathbf{3}$	States the largest odd number and an odd number that is greater E.g. odd number n and $n+2$	M1
	Fully correct proof including the assumption: there exists a greatest odd number " n " a correct statement that their second odd number is greater than their assumed greatest odd number - a minimal conclusion " this is a contradiction, hence proven"	A1*
	You can ignore any spurious information e.g. $n>0, n+2>0$ etc.	

M1: For starting the proof by stating an odd number and a larger odd number.
Examples of an allowable start are

- odd number " n " with " $n+2$ "
- odd number " n " with " n "
- $2 k+1$ " with $2 k+3$ "
- $2 k+1$ " with " $(2 k+1)^{3}$ "
- " $2 k+1$ " with " $2 k+1+2 k$ "

Note that stating $n=2 k$, even when accompanied by the statement that " n " is odd is M0
A1*: A fully correct proof using contradiction
This must consist of

1) An assumption E.g. "(Assume that) there exists a greatest odd number $n "$
"Let " $2 k+1$ " be the greatest odd number"
2) A minimal statement showing their second number is greater than the first, E.g. If " n " is odd and " $n+2$ " is greater than n

If " n " is odd and $n^{2}>n$
$2 k+3>2 k+1$
$2 k+2 k+1>2 k+1$
Any algebra (e.g. expansions) must be correct. So $(2 k+1)^{2}=4 k^{2}+2 k+1$ would be A 0
3) A minimal conclusion which could be
"hence there is no greatest odd number", "hence proven", or simply \checkmark

wwwocesipe Number	Scheme	Marks
4(a)	$k=2$ or $x>2$	B1
	$t=\frac{1}{x-2} \Rightarrow y=\frac{1-\frac{2}{x-2}}{3+\frac{1}{x-2}}$	M1 A1
	$\frac{1-\frac{2}{x-2}}{3+\frac{1}{x-2}}=\frac{x-2-2}{\ldots} \text { or } \frac{\ldots}{3(x-2)+1}$	A1 (M1 on EPEN)
	$y=\frac{x-4}{3 x-5}$	A1
		(5)
(b)	$-2<\mathrm{g}<\frac{1}{3}$	M1 A1
		(2)
		$\begin{array}{r} (7 \\ \text { marks) } \end{array}$

(a)

B1: States that $k=2$ or else states that the domain is $x>2$. Must be seen in part (a).
M1: Attempts to find t in terms of x and substitutes into y.
Condone poor attempts but you should expect to see $t=\mathrm{f}(x)$ found from $x=\frac{1}{t}+2$ substituted into $y=\frac{1-2 t}{3+t}$ condoning slips.
A1: A correct unsimplified equation involving just x and y
A1(M1 on EPEN): Correct numerator or denominator with fraction removed (allow unsimplified)
A1: $y=\frac{x-4}{3 x-5}$ or $\mathrm{g}(x)=\frac{x-4}{3 x-5}$ (must be $y=\ldots$ or $\mathrm{g}(x)=\ldots$ but allow this mark as long as the $y=\ldots$ or $\mathrm{g}(x)=\ldots$ is present at some point)

Alternative 1 for part (a)

M1: Assume $\mathrm{g}(x)=\frac{a x+b}{c x+d}$ and substitute in $x=\frac{1}{t}+2$
A1: $\mathrm{g}(x)=\frac{a+(b+2 a) t}{c+(d+2 c) t}$
A1(M1 on EPEN): Correct numerator or denominator
A1: $y=\frac{x-4}{3 x-5}$ or $\mathrm{g}(x)=\frac{x-4}{3 x-5}$ (must be $y=\ldots$ or $\mathrm{g}(x)=\ldots$ but allow this mark as long as the $y=\ldots$ or $\mathrm{g}(x)=\ldots$ is present at some point)

Alternative 2 for part (a)

M1: Attempts to find t in terms of y and substitutes into x.
Condone poor attempts but you should expect to see $t=\mathrm{f}(y)$ found from $y=\frac{1-2 t}{3+t}$ substituted into

$$
\left.x=\frac{1}{t}+2 \text { condoning slips. (NB } t=\frac{1-3 y}{y+2} \Rightarrow x=\frac{y+2}{1-3 y}+2\right)
$$

A1: A correct unsimplified equation involving just x and y
A1(M1 on EPEN): Correct numerator or denominator

$\mathrm{g}(x)=\ldots$ is present at some point)
(b)

M1: For obtaining one of the 2 boundaries (just look for values) e.g. -2 or $\frac{1}{3}$ or for attempting $g(2)$ for their g or for attempting $\frac{\text { their } a}{\text { their } c}$. Note that for this mark they must be attempting values of y (or $\mathrm{g}(x)$).
A1: Correct range: Allow $-2<\mathrm{g}<\frac{1}{3},-2<\mathrm{g}(x)<\frac{1}{3},-2<y<\frac{1}{3},\left(-2, \frac{1}{3}\right), \mathrm{g}>-2$ and $\mathrm{g}<\frac{1}{3}$

Question Number	Scheme	Marks
$\mathbf{5}$	$u=3+\sqrt{2 x-1} \Rightarrow x=\frac{(u-3)^{2}+1}{2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=u-3$	M1 A1

$u=3+\sqrt{2 x-1} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2}(2 x-1)^{-\frac{1}{2}} \times 2=\frac{1}{\sqrt{2 x-1}}=\frac{1}{u-3}$

$\int \frac{4}{3+\sqrt{2 x-1}} \mathrm{~d} x=\int \frac{4}{u} \times(u-3) \mathrm{d} u$	M 1
$\int \frac{4}{u} \times(u-3) \mathrm{d} u=\int\left(4-\frac{12}{u}\right) \mathrm{d} u$	dM 1
$\int\left(4-\frac{12}{u}\right) \mathrm{d} u=4 u-12 \ln u \quad$ or $\quad k(4 u-12 \ln u)$	ddM1 A1ft
$\int_{1}^{13} \frac{4}{3+\sqrt{2 x-1}} \mathrm{~d} x=[4 u-12 \ln u]_{4}^{8}=(4 \times 8-12 \ln 8)-(4 \times 4-12 \ln 4)$	M1
$\int_{1}^{13} \frac{4}{3+\sqrt{2 x-1}} \mathrm{~d} x=[4(3+\sqrt{2 x-1})-12 \ln (3+\sqrt{2 x-1})]_{1}^{13}=(4 \times 8-12 \ln 8)-(4 \times 4-12 \ln 4)$	
$=16-12 \ln 2$	A1

M1: Differentiates to get $\frac{\mathrm{d} u}{\mathrm{~d} x}$ in terms of x and then obtains $\frac{\mathrm{d} x}{\mathrm{~d} u}$ in terms of u
Need to see $\frac{\mathrm{d} u}{\mathrm{~d} x}=k(2 x-1)^{-\frac{1}{2}} \rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{a u+b}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=a u+b$
or
Attempts to change the subject of $u=3+\sqrt{2 x-1}$ and differentiates to get $\frac{\mathrm{d} x}{\mathrm{~d} u}$ in terms of u
Need to see $x=\frac{(u \pm 3)^{2} \pm 1}{2} \rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=a u+b$
A1: $\frac{\mathrm{d} x}{\mathrm{~d} u}=u-3$ oe e.g. $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{u-3}, \mathrm{~d} u=\frac{\mathrm{d} x}{u-3}, \mathrm{~d} x=(u-3) \mathrm{d} u$
M1: Attempts to write the integral completely in terms of u.
Need to see $\int \frac{\cdots}{u} \times$ their $\frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u$ with or without the " $\mathrm{d} u$ " but not e.g. $\int \frac{\cdots}{u} \times \frac{1}{\frac{\mathrm{~d} x}{\mathrm{~d} u}} \mathrm{~d} u$
dM1: Divides to reach an integral of the form $\int\left(A+B \times \frac{1}{u}\right) \mathrm{d} u$. Depends on both previous M's
$\mathbf{d M 1}$: Integrates to a form $A u+B \ln u$. Depends on the previous M.
An alternative for the previous 2 marks is to use integration by parts:
E.g. $\int \frac{4}{u} \times(u-3) \mathrm{d} u=4(u-3) \ln u-\int 4 \ln u \mathrm{~d} u=4 u \ln u-12 \ln u-4 u \ln u+4 u=4 u-12 \ln u$

Score dM 1 for $\int \frac{k}{u} \times(A u+B) \mathrm{d} u=k(A u+B) \ln u-\int k \ln u \mathrm{~d} u$ and dM 1 for integrating to a form $A u+B \ln u$.

M1: Substitutes 8 and 4 into their $4 u-12 \ln u$ and subtracts or substitutes 13 and 1 into their $4 u-12 \ln u$ with $u=3+\sqrt{2 x-1}$ and subtracts. This mark depends on there having been an attempt to integrate, however poor.
A1: $16-12 \ln 2$

(a)

B1: Differentiates $4 y^{2}+3 x$ to obtain $8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+3$. Allow unsimplified forms such as $4 \times 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+3$
M1: Uses the product rule on $6 y \mathrm{e}^{-2 x}$ to obtain an expression of the form $A y \mathrm{e}^{-2 x}+B \mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
A1: Differentiates $6 y \mathrm{e}^{-2 x}$ to obtain $-12 y \mathrm{e}^{-2 x}+6 \mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
M1: Collects two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (one from attempting to differentiate $4 y^{2}$ and one from attempting to differentiate $\left.6 y \mathrm{e}^{-2 x}\right)$ and proceeds to make $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject.
A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 y \mathrm{e}^{-2 x}+3}{6 \mathrm{e}^{-2 x}-8 y}$ or equivalent e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{-2 x} \times 6 y+3}{6 \mathrm{e}^{-2 x}-8 y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 y+3 \mathrm{e}^{2 x}}{6-8 y \mathrm{e}^{2 x}}$
You can ignore any spurious $" \frac{\mathrm{~d} y}{\mathrm{~d} x}="$ at the start and allow y^{\prime} for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b)

B1: Uses $x=0$ to obtain $y=\frac{3}{2}$ oe e.g. $\frac{6}{4}$ (ignore any reference to $y=0$)
M1: Substitutes $x=0$ and their y at $x=0$ which has come from substituting $x=0$ into the original equation into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 y \mathrm{e}^{-2 x}+3}{6 \mathrm{e}^{-2 x}-8 y}$ to find a numerical value. Working is normally shown here but you may need to check for evidence. Use of $x=0$ and $y=0$ is M0.
dM1: Uses the negative reciprocal of " $\frac{7}{-2}$ " for the gradient of the normal and uses this and their value of y at $x=0$ to form the equation of the normal. Depends on the previous M.

Note that the use of $(0,0)$ for P will generally lose the final 3 marks in (b)

wwwocestiper	ub/wma14 Scheme	Marks
$7(a)$ Way 1	$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\int \frac{1}{2} \mathrm{e}^{2 x} \cos x \mathrm{~d} x$	M1
	$=\ldots-\frac{1}{4} \mathrm{e}^{2 x} \cos x-\int \frac{1}{4} \mathrm{e}^{2 x} \sin x \mathrm{~d} x$	dM1
	$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\frac{1}{4} \mathrm{e}^{2 x} \cos x-\int \frac{1}{4} \mathrm{e}^{2 x} \sin x \mathrm{~d} x$	A1
	$\frac{5}{4} \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\frac{1}{4} \mathrm{e}^{2 x} \cos x \Rightarrow \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\ldots$	ddM1
	$=\frac{2}{5} \mathrm{e}^{2 x} \sin x-\frac{1}{5} \mathrm{e}^{2 x} \cos x+c$	A1
		(5)
7(a) Way 2	$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x+\int 2 \mathrm{e}^{2 x} \cos x \mathrm{~d} x$	M1
	$=\ldots+2 \mathrm{e}^{2 x} \sin x-\int 4 \mathrm{e}^{2 x} \sin x \mathrm{~d} x$	dM1
	$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x+2 \mathrm{e}^{2 x} \sin x-\int 4 \mathrm{e}^{2 x} \sin x \mathrm{~d} x$	A1
	$5 \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x+2 \mathrm{e}^{2 x} \sin x \Rightarrow \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\ldots$	ddM1
	$=\frac{2}{5} \mathrm{e}^{2 x} \sin x-\frac{1}{5} \mathrm{e}^{2 x} \cos x+c$	A1
		(5)
(b)	$\left(\frac{2}{5} \mathrm{e}^{2 \pi} \sin \pi-\frac{1}{5} \mathrm{e}^{2 \pi} \cos \pi\right)-\left(\frac{2}{5} \mathrm{e}^{0} \sin 0-\frac{1}{5} \mathrm{e}^{0} \cos 0\right)=\ldots$	M1
	$=\frac{1}{5} \mathrm{e}^{2 \pi}+\frac{1}{5}=\frac{\mathrm{e}^{2 \pi}+1}{5} *$	A1*
		(2)
		(7 marks)

Note that you can condone the omission of the dx's throughout.

(a) Way 1

M1: Attempts integration by parts with $u=\sin x$ and $v^{\prime}=\mathrm{e}^{2 x}$ to obtain

$$
\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=A \mathrm{e}^{2 x} \sin x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x \quad A>0
$$

dM1: Attempts integration by parts again with $u=\cos x$ and $v^{\prime}=\mathrm{e}^{2 x}$ on $B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$ to obtain

$$
B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x= \pm C \mathrm{e}^{2 x} \cos x \pm D \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x
$$

Depends on the previous mark.

A1: For $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\frac{1}{4} \mathrm{e}^{2 x} \cos x-\int \frac{1}{4} \mathrm{e}^{2 x} \sin x \mathrm{~d} x$

WWWAGownermplificdub. Winatin $\frac{1}{\mathrm{~d}} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\left\{\frac{1}{4} \mathrm{e}^{2 x} \cos x+\int \frac{1}{4} \mathrm{e}^{2 x} \sin x \mathrm{~d} x\right\}$

ddM1: Dependent upon having scored both M's.

It is for collecting $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x$ terms together and making it the subject of the formula
A1: $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{2}{5} \mathrm{e}^{2 x} \sin x-\frac{1}{5} \mathrm{e}^{2 x} \cos x+c$ (allow with or without " $+c$ ")
(a) Way 2

M1: Attempts integration by parts with $u=\mathrm{e}^{2 x}$ and $v^{\prime}=\sin x$ to obtain

$$
\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x= \pm A \mathrm{e}^{2 x} \cos x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x
$$

dM1: Attempts integration by parts again with $u=\mathrm{e}^{2 x}$ and $v^{\prime}=\cos x$ on $B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$ to obtain

$$
B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x= \pm C \mathrm{e}^{2 x} \sin x \pm D \int \mathrm{e}^{2 x} \sin x \mathrm{~d} x
$$

Depends on the previous mark.

A1: For $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x+2 \mathrm{e}^{2 x} \sin x-\int 4 \mathrm{e}^{2 x} \sin x \mathrm{~d} x$
Allow unsimplified e.g. $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x-\left\{-2 \mathrm{e}^{2 x} \sin x-\int-4 \mathrm{e}^{2 x} \sin x \mathrm{~d} x\right\}$
ddM1: Dependent upon having scored both M's.
It is for collecting $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x$ terms together and making it the subject of the formula
A1: $\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{2}{5} \mathrm{e}^{2 x} \sin x-\frac{1}{5} \mathrm{e}^{2 x} \cos x+c$ (allow with or without " $+c$ ")
(a) Way 3

M1: Attempts integration by parts with $u=\sin x$ and $v^{\prime}=\mathrm{e}^{2 x}$ to obtain
$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=A \mathrm{e}^{2 x} \sin x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x \quad A>0$
or attempts integration by parts with $u=\mathrm{e}^{2 x}$ and $v^{\prime}=\sin x$ to obtain
$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x= \pm A \mathrm{e}^{2 x} \cos x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$
dM1: Attempts integration by parts with $u=\sin x$ and $v^{\prime}=\mathrm{e}^{2 x}$ to obtain
$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x= \pm A \mathrm{e}^{2 x} \sin x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$
and attempts integration by parts with $u=\mathrm{e}^{2 x}$ and $v^{\prime}=\sin x$ to obtain
$\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x= \pm A \mathrm{e}^{2 x} \cos x \pm B \int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$
A1: $I_{1}=\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x} \sin x-\int \frac{1}{2} \mathrm{e}^{2 x} \cos x \mathrm{~d} x$ AND $I_{2}=\int \mathrm{e}^{2 x} \sin x \mathrm{~d} x=-\mathrm{e}^{2 x} \cos x+\int 2 \mathrm{e}^{2 x} \cos x \mathrm{~d} x$ ddM1: E.g. $4 I_{1}+I_{2}=2 \mathrm{e}^{2 x} \sin x-\mathrm{e}^{2 x} \cos x=5 I \Rightarrow I=\ldots$ Correct attempt to eliminate $\int \mathrm{e}^{2 x} \cos x \mathrm{~d} x$ term.

(b)

M1: For applying the limits 0 and π to an expression containing at least one term of the form $A \mathrm{e}^{2 x} \sin x$ and at least one term of the form $B \mathrm{e}^{2 x} \cos x$. There must be some evidence that both limits have been used.
$A 1^{*}: \frac{\mathrm{e}^{2 \pi}+1}{5}$ found correctly from the correct answer in part (a) via at least one intermediate line which could be $\frac{\mathrm{e}^{2 \pi}}{5}+\frac{1}{5}$
Note a correct answer in (a) and evidence of use of the limits 0 and pi followed by $\frac{\mathrm{e}^{2 \pi}+1}{5}$ with no intermediate line scores M1A0

www.CasperYC.club/wma14

Question Number	Scheme	Marks
8	$\left(\begin{array}{r}-1 \\ 5 \\ 4\end{array}\right)+\lambda\left(\begin{array}{r}2 \\ -1 \\ 5\end{array}\right)=\left(\begin{array}{r}2 \\ -2 \\ -5\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -3 \\ b\end{array}\right) \Rightarrow \begin{array}{cc}-1+2 \lambda=2+4 \mu & (1) \\ 5-\lambda=-2-3 \mu & (2) \\ 4+5 \lambda=-5+\mu b & (3)\end{array}$	
	Uses equations (1) and (2) to find either λ or μ e.g. $(1)+2(2) \Rightarrow \mu=\ldots$ or $3(1)+4(2) \Rightarrow \lambda=\ldots$	M1
	Uses equations (1) and (2) to find both λ and μ	dM1
	$\mu=-\frac{11}{2}$ and $\lambda=-\frac{19}{2}$	A1
	$4+5 \lambda=-5+\mu b \Rightarrow 4+5 \times-\frac{19}{2}=-5-\frac{11}{2} b$ or $4+5 \lambda=-5+7 \mu \Rightarrow 4+5 \times-\frac{19}{2}=-5-\frac{11}{2} \times 7$	ddM1
	$\Rightarrow 11 b=77 \Rightarrow b=7$ or obtains $-\frac{87}{2}=-\frac{87}{2}$	A1
	States that when $b=7$, lines intersect or when $b \neq 7$, lines do not intersect Lines are not parallel so when $b \neq 7$ lines are skew. *	A1 Cso
		(6)
	Alternative assuming $\boldsymbol{b}=7$:	
	$\left(\begin{array}{r}-1 \\ 5 \\ 4\end{array}\right)+\lambda\left(\begin{array}{r}2 \\ -1 \\ 5\end{array}\right)=\left(\begin{array}{r}2 \\ -2 \\ -5\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -3 \\ 7\end{array}\right) \Rightarrow \begin{gathered}-1+2 \lambda=2+4 \mu \\ 5-\lambda=-2-3 \mu \\ 4+5 \lambda=-5+7 b \\ 4\end{gathered}(3)$	
	Uses any 2 equations to find either λ or μ	M1
	Uses any 2 equations to find both λ and μ	dM1
	$\mu=-\frac{11}{2}$ and $\lambda=-\frac{19}{2}$	A1
	Checks in the $3^{\text {rd }}$ equation e.g. equation $3: 4+5\left(-\frac{19}{2}\right)=-5+7\left(-\frac{11}{2}\right)=\ldots$ equation 1: $-1+2\left(-\frac{19}{2}\right)=2+4\left(-\frac{11}{2}\right)=\ldots$ equation 2: $5-\left(-\frac{19}{2}\right)=-2-3\left(-\frac{11}{2}\right)=\ldots$	ddM1
	Equation 3: $-\frac{87}{2} \quad$ Equation 1:-20 \quad Equation 2: $\frac{29}{2}$	A1
	States that when $b=7$, lines intersect or when $b \neq 7$, lines do not intersect Lines are not parallel so when $b \neq 7$ lines are skew. *	A1 Cso

dM1: For attempting to solve equations (1) and (2) to find both λ and μ Depends on the first \mathbf{M}.
A1: $\mu=-\frac{11}{2}$ and $\lambda=-\frac{19}{2}$
ddM1: Attempts to solve $4+5 \lambda=-5+\mu b$ for their values of λ and μ. Or uses $b=7$ with their λ and μ in an attempt to show equality. Depends on both previous M's.
A1: Achieves (without errors) that they will intersect when $b=7$
Note that the previous $\mathbf{3}$ marks may be scored without explicitly seeing the values of both parameters e.g.
$\mu=-\frac{11}{2},(2) \rightarrow \lambda=3 \mu+7 \rightarrow 4+5(3 \mu+7)=-5+\mu b \rightarrow b=7$
$\mathrm{A} 1^{*}:$ Cso States that when $b=7$, lines intersect and since lines are not parallel it shows that when $b \neq 7$ lines are skew.

Alternative:

M1: Uses $b=7$ and attempts to solve 2 equations to find either λ or μ
$\mathbf{d M 1}$: For attempting to solve 2 equations to find both λ and μ Depends on the first M.
A1: $\mu=-\frac{11}{2}$ and $\lambda=-\frac{19}{2}$
ddM1: Attempts to show that the $3^{\text {rd }}$ equation is true for their values of λ and μ

Depends on both previous M's.

A1: Achieves (without errors) that the $3^{\text {rd }}$ equation gives the same values for (or equivalent)
A1*: Cso States that when $b=7$, lines intersect and since lines are not parallel it shows that when $b \neq 7$ lines are skew.

To score the final mark there must be some statement that the lines intersect (or equivalent e.g. meet at a point, cross, etc.) when $b=7$ or that they do not intersect if $b \neq 7$ and that the lines are not parallel which may appear anywhere (reason not needed but may be present) so lines are skew when $b \neq 7$.

Ignore any work attempting to show that the lines are perpendicular or not.

(a)

B1: States or uses $\tan \theta=\sqrt{3} \Rightarrow k=\frac{\pi}{3}$ (Allow 60° here). May be implied by their integral.
Allow if seen anywhere in the question either stated or used as their upper limit.
M1: Attempts volume $=(A \pi) \int y^{2} \mathrm{~d} x=(A \pi) \int(2 \sin 2 \theta)^{2} \sec ^{2} \theta \mathrm{~d} \theta$ with or without π or " $\mathrm{d} \theta$ ".
Condone bracketing errors
A1: For a volume of $(A \pi) \int(2 \sin 2 \theta)^{2} \sec ^{2} \theta \mathrm{~d} \theta$ with or without π or " $\mathrm{d} \theta$ ". The brackets must be present but may be implied by subsequent work.
$\mathbf{d M 1}$: Uses $\sin 2 \theta=2 \sin \theta \cos \theta$ and proceeds to Volume $=B \int \sin ^{2} \theta \mathrm{~d} \theta$ with or without " $\mathrm{d} \theta$ ". (No requirement for limits yet). Note that if $(2 \sin 2 \theta)^{2}$ becomes $2 \sin ^{2} \theta \cos ^{2} \theta$ with no evidence of a correct identity then score dM0

Depends on the first M.

A1: Volume $=(A \pi) \int 16 \sin ^{2} \theta$ d θ oe e.g. $(A \pi) \int 16\left(1-\cos ^{2} \theta\right) \mathrm{d} \theta$ with or without π or "d θ ". (No requirement for limits yet)
dM1: Attempts to use $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ or $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$ and obtains Volume $=\int(P \pm Q \cos 2 \theta) \mathrm{d} \theta$

A1: CSO $\int_{0}^{\frac{\pi}{3}} 8 \pi(1-\cos 2 \theta) \mathrm{d} \theta$. Fully correct integral with both limits and the " $\mathrm{d} \theta$ " but the 8 and/or the π can be either side of the integral sign.

Note this alternative solution for part (a):

$$
\begin{gathered}
V=(A \pi) \int y^{2} \mathrm{~d} x=(A \pi) \int(2 \sin 2 \theta)^{2} \sec ^{2} \theta \mathrm{~d} \theta=(A \pi) \int \frac{4 \sin ^{2} 2 \theta}{\cos ^{2} \theta} \mathrm{~d} \theta \text { M1 A1 as above } \\
=(A \pi) \int \frac{4 \sin ^{2} 2 \theta}{\frac{1}{2}(1+\cos 2 \theta)} \mathrm{d} \theta
\end{gathered}
$$

$\mathrm{dM} 1:$ uses $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$ in the denominator. A1: Correct integral

$$
=8(A \pi) \int \frac{1-\cos ^{2} 2 \theta}{1+\cos 2 \theta} \mathrm{~d} \theta=8(A \pi) \int \frac{(1+\cos 2 \theta)(1-\cos 2 \theta)}{1+\cos 2 \theta} \mathrm{~d} \theta
$$

dM1: Uses $\sin ^{2} 2 \theta=1-\cos ^{2} 2 \theta$ and the difference of 2 squares in the numerator and cancels

$$
\text { Volume }=\int_{0}^{\frac{\pi}{3}} 8 \pi(1-\cos 2 \theta) \mathrm{d} \theta \quad \text { A1 Cso }
$$

Note that a Cartesian approach in part (a) essentially follows the main scheme e.g.
$V=(\pi) \int y^{2} \mathrm{~d} x=(A \pi) \int\left(4 x \cos ^{2} \theta\right)^{2} \sec ^{2} \theta \mathrm{~d} \theta=4(A \pi) \int 4 \sin ^{2} \theta \cos ^{2} \theta \times \frac{1}{\cos ^{2} \theta} \mathrm{~d} \theta$ etc.
If in doubt whether such attempts deserve credit send to review.
(b)

B1: States or uses $\int(1-\cos 2 \theta) \mathrm{d} \theta \rightarrow \theta-\frac{\sin 2 \theta}{2}$
M1: Volume $=\int_{0}^{\frac{\pi}{3}} p(1-\cos 2 \theta) \mathrm{d} \theta=[p \theta \pm k p \sin 2 \theta]_{0}^{\frac{\pi}{3}}$ and uses the limit $\frac{\pi}{3}\left(\operatorname{not} 60^{\circ}\right)$.
(The limit of 0 may not be seen)
A1: $\frac{8}{3} \pi^{2}-2 \sqrt{3} \pi$ oe e.g. $8 \pi\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right) \frac{8}{3}, \pi^{2}-2 \sqrt{3} \pi, \frac{2 \pi}{3}(4 \pi-3 \sqrt{3}), \frac{8 \pi^{2}-6 \sqrt{3} \pi}{3}$

$\begin{gathered} \text { ww Weesigp } \\ \text { Number } \end{gathered}$	YC.club/wma14 Scheme	Marks
10(a)	$\frac{1}{(H-5)(H+3)}=\frac{A}{H-5}+\frac{B}{H+3} \Rightarrow A=\ldots$ or $B=\ldots$	M1
	$A=\frac{1}{8}$ or $B=-\frac{1}{8}$	A1
	$\begin{gathered} \frac{1}{(H-5)(H+3)}=\frac{1}{8(H-5)}-\frac{1}{8(H+3)} \text { or } \frac{\frac{1}{8}}{(H-5)}-\frac{\frac{1}{8}}{(H+3)} \text { or } \frac{\frac{1}{8}}{(H-5)}+\frac{-\frac{1}{8}}{(H+3)} \\ \quad \text { or } \frac{1}{8 H-40}-\frac{1}{8 H+24} \end{gathered}$	A1
		(3)
(b)	$\begin{gathered} \frac{\mathrm{d} H}{\mathrm{~d} t}=-\frac{(H-5)(H+3)}{40} \\ \int \frac{40}{(H-5)(H+3)} \mathrm{d} H=\int-1 \mathrm{~d} t \text { or e.g. } \int \frac{1}{(H-5)(H+3)} \mathrm{d} H=\int-\frac{1}{40} \mathrm{~d} t \\ \int \frac{5}{(H-5)}-\frac{5}{(H+3)} \mathrm{d} H=\int-1 \mathrm{~d} t \text { or e.g. } \frac{1}{8} \int \frac{1}{(H-5)}-\frac{1}{(H+3)} \mathrm{d} H=\int-\frac{1}{40} \mathrm{~d} t \end{gathered}$	M1
	$\begin{gathered} 5 \ln \|H-5\|-5 \ln \|H+3\|=-t(+c) \text { oe e.g. } \frac{1}{8} \ln \|H-5\|-\frac{1}{8} \ln \|H+3\|=-\frac{1}{40} t(+c) \\ \text { Or e.g. } 5 \ln (8 H-40)-5 \ln (8 H+24)=-t(+c) \text { etc. } \end{gathered}$	M1 A1ft
	$\text { Substitutes } t=0, H=13 \Rightarrow c=\ldots$ Note that this may happen at a later stage e.g. may attempt to remove logs and then substitute to find the constant	M1
	$\begin{gathered} 5 \ln \|H-5\|-5 \ln \|H+3\|=-t+5 \ln \left(\frac{1}{2}\right) \text { oe e.g. } \\ \frac{1}{8} \ln \|H-5\|-\frac{1}{8} \ln \|H+3\|=-\frac{1}{40} t+\frac{1}{8} \ln \left(\frac{1}{2}\right) \end{gathered}$	A1
	$5 \ln \left(2\left\|\frac{H-5}{H+3}\right\|\right)=-t \Rightarrow \frac{H-5}{H+3}=\frac{1}{2} \mathrm{e}^{-0.2 t} \Rightarrow H=\ldots$	dddM1
	$H=\frac{10+3 \mathrm{e}^{-0.2 t}}{2-\mathrm{e}^{-0.2 t}} *$	A1*
		(7)
(c)	Sets $\frac{10+3 \mathrm{e}^{-0.2 t}}{2-\mathrm{e}^{-0.2 t}}=8 \Rightarrow \mathrm{e}^{-0.2 t}=\left(\frac{6}{11}\right)$	M1
	$\Rightarrow t=-5 \ln \left(\frac{6}{11}\right)=$ awrt 3.03 days	dM1 A1
		(3)
(d)	$k=5$	B1
		(1)
		(14 marks)

(a)

M1: Attempts any correct method to find either constant. It is implied by one correct constant
A1: One correct constant

WWWG.fas peetialy@ctidnsb/what $1 \frac{1}{8(H-5)} \frac{1}{8(H+3)}$. Note that this mark is not just for the correct constants, it is for the correctly stated fractions either in part (a) or used in part (b). Allow 0.125 for $1 / 8$.
(b)

M1: Separates the variables and uses part (a) to reach: $\int \frac{P}{(H-5)}+\frac{Q}{(H+3)} \mathrm{d} H=\int \pm k \mathrm{~d} t$ with or without the integral signs
M1: Attempts to integrate both sides to reach: $\alpha \ln |H-5|+\beta \ln |H+3|=k t$ or e.g. $\alpha \ln |8 H-40|+\beta \ln |8 H+24|=k t$ Condone $|\mid \leftrightarrow()$ and condone the omission of brackets e.g. allow $\alpha \ln H-5+\beta \ln H+3=k t$ or e.g. $\alpha \ln 8 H-40+\beta \ln 8 H+24=k t$
A1ft: Correct integration of both sides following through on their PF in (a). Condone $\mid \leqslant()$ and condone the omission of $+c$ but brackets must be present unless they are implied by subsequent work.
Also follow through on a MR of $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{(H-5)(H+3)}{40}$ for $\frac{\mathrm{d} H}{\mathrm{~d} t}=-\frac{(H-5)(H+3)}{40}$ E.g. obtains $\frac{1}{8} \ln |H-5|-\frac{1}{8} \ln |H+3|=\frac{1}{40} t(+c)$

M1: Substitutes $t=0, H=13 \Rightarrow c=\ldots$ For this to be scored there must have been $\mathrm{a}+c$ and depends on some attempt at integration of both sides however poor.
Alternatively attempts $\int_{13}^{H} \frac{1}{(H-5)}-\frac{1}{(H+3)} \mathrm{d} H=\int_{0}^{t}-\frac{1}{5} \mathrm{~d} t \Rightarrow\left[\ln \frac{H-5}{H+3}\right]_{13}^{H}=\left[-\frac{1}{5}\right]_{0}^{t} \Rightarrow \ln \frac{H-5}{H+3}-\ln \frac{1}{2}=-\frac{1}{5} t$
A1: For a correct equation in H and t. Condone $|\mid \leftrightarrow()$ but brackets must be present unless they are implied by subsequent work.
dddM1: A correct attempt to make H the subject of the formula. All previous M's in (b) must have been scored.
$\mathrm{A} 1^{*}: H=\frac{10+3 \mathrm{e}^{-0.2 t}}{2-\mathrm{e}^{-0.2 t}}$ cso with sufficient working shown and no errors.

Note that marks in (b) may need to be awarded retrospectively:

E.g. First 3 marks gained to reach $\ln |H-5|-\ln |H+3|=-\frac{1}{5} t+c$ and then:

$$
\begin{gathered}
\ln \frac{H-5}{H+3}=-\frac{1}{5} t+c \Rightarrow \frac{H-5}{H+3}=A \mathrm{e}^{-0.2 t} \Rightarrow H=\frac{5+3 \mathrm{Ae}^{-0.2 t}}{1-\mathrm{Ae}^{-0.2 t}} \\
H=13, t=0 \Rightarrow 13=\frac{5+3 \mathrm{~A}}{1-\mathrm{A}} \Rightarrow A=\frac{1}{2} \Rightarrow H=\frac{5+\frac{3}{2} \mathrm{e}^{-0.2 t}}{1-\frac{1}{2} \mathrm{e}^{-0.2 t}}=\frac{10+3 \mathrm{e}^{-0.2 t}}{2-\mathrm{e}^{-0.2 t}} *
\end{gathered}
$$

The M3 can be awarded when they attempt to find " A ", the dddM4 can be awarded for a correct attempt to make H the subject and then A2 and A3 can be awarded together at the end.
(c)

M1: Sets $\frac{10+3 \mathrm{e}^{-0.2 t}}{2-\mathrm{e}^{-0.2 t}}=8$ or possibly an earlier version of H or possibly their t in terms of H and reaches $A \mathrm{e}^{ \pm 0.2 t}=p, \quad p>0$
dM1: Correct processing of an equation of the form $A \mathrm{e}^{ \pm 0.2 t}=p$ with correct \log work leading to $t=\ldots$

Depends on the first M.

(d)

B1: $k=5$ (Allow $H=5$ or just " 5 ")

